dc.description.abstract | Diese Arbeit präsentiert neue Methoden zur effizienten fotorealistischen und Hardware-beschleunigten Bildgenerierung von Szenen die komplexe globale Beleuchtung aufweisen, und zusätzlich auch groß sein können. Das beinhaltet * eine Photon Map-basierte Radiance Abschätzungs Methode die die Qualität der globalen Beleuchtungs Lösung in der Photon Map-globalen Beleuchtungs Simulation verbessert. * eine Particle Map-basierte Importance Sampling Technik die die Leistung von stochastischer Ray Tracing-basierter Bildgenerierung und globaler Beleuchtungs Simulation verbessert. * eine Hardware-beschleunigte Bildgenerierungs Methode die das interaktive Durchschreiten global beleuchteter glänzender Szenen ermöglicht. * eine Occlusion Culling Technik die das interaktive Durchschreiten auch in großen Szenen ermöglicht. Es hat sich erwiesen daß die Photon Map-globale Beleuchtungs Simulation eine leistungsvolle Methode zur Ray Tracing-basierten Bildgenerierung von global beleuchteten Szenen mit allgemeinen bidirektionalen Streuungs Verteilungs Funktionen, und allen dadurch möglichen Beleuchtungseffekten ist. Dennoch, eine der Schwächen dieser Methode ist bisher gewesen daß sie eine sehr grobe Radiance-Abschätzung verwendet, die Beleuchtungs-Artefakte in der Nähe von Kanten und Ecken von Objekten, und auf Oberflächen mit unterschiedlich orientierten kleinen geometrischen Details verursachen kann. Unsere neue Photon Map-basierte Radiance-Abschätzungs Methode vermeidet diese Artefakte. Das wird gemacht indem die tatsächliche Geometrie der beleuchteten Oberflächen berücksichtigt wird. In stochastischem Ray Tracing-basierten Bildgenerierungs und globalen Beleuchtungs Techniken, z.B. in Photon Map-globale Beleuchtungs Simulation, muß eine sehr große Anzahl an Strahlen in die Szene geschossen werden um die globale Beleuchtung und/oder das endgültige Bild zu berechnen. Die Leistung dieser Techniken kann daher wesentlich verbessert werden indem die Strahlen vorzugsweise in Richtungen geschossen werden wo sie einen hohen Beitrag liefern. Importance Sampling Techniken versuchen dies zu tun, aber das Problem dabei ist daß der Beitrag geschätzt werden muß, und das muß freilich effizient getan werden. Unsere neue Importance Sampling Technik löst dieses Problem unter Verwendung einer Particle Map. Die Wahrscheinlichkeits-Dichte Funktion anhand derer die Schußrichtung eines von einem Punkt ausgehenden Strahls gewählt wird ist aus adaptiven Abdrücken zusammengesetzt die die nähesten Nachbar Partikel auf der Hemisphäre über dem Punkt machen. Die Strahlen können daher präzise in Richtungen mit hohem Beitrag geschossen werden. Interaktive Durchschreitungen in global beleuchteten statischen Szenen können realisiert werden indem die berechnungsintensive globale Beleuchtungs Simulation in einem Vorverarbeitungsschritt getan wird. Das Resultat dieses Schritts sollte eine Repräsentation der globalen Beleuchtung sein die in einer folgenden interaktiven Durchschreitung effizient dargestellt werden kann, die mit Grafik-Hardware dargestellt wird. Ein wesentliches Problem dabei ist die räumlich und richtungsmäßig variierende globale Beleuchtung auf glänzenden Oberflächen zu handhaben. Unsere neue Methode für interaktive Durchschreitungen von leicht glänzenden Szenen lößt dieses Problem mit richtungsabhängigen Light Maps, die effizient mit konventioneller Grafik- Hardware dargestellt werden können. In großen Szenen, z.B. in einem Gebäude, in denen von jedem möglichen Betrachtungspunkt aus nur ein kleiner Teil sichtbar ist, wäre es ineffizient all jene Objekte zu zeichnen die von anderen Teilen der Szene verdeckt sind. Um eine Echtzeit-Bildwiederholrate für interaktive Durchschreitungen zu erreichen ist es notwendig effizient zu ermitteln welche Objekte verdeckt sind, damit sie weggelassen werden können. Unsere neue konservative Bildraum-Occlusion Culling Methode erreicht das unter Verwendung eines Lazy Occlusion Grids das effizient mit konventioneller Grafik-Hardware funktioniert. - This work presents new methods for the efficient photorealistic and hardware accelerated rendering of scenes which exhibit complex global illumination, and which additionally also may be large. This includes * a photon map-based radiance estimation method that improves the quality of the global illumination solution in photon map global illumination simulation. * a particle map-based importance sampling technique which improves the performance of stochastic ray tracing-based rendering and global illumination simulation. * a hardware accelerated rendering method which allows to do interactive walkthroughs in globally illuminated glossy scenes. * an occlusion culling technique which allows to do interactive walkthroughs also in large scenes. Photon map global illumination simulation has proven to be a powerful method for ray tracing-based photorealistic rendering of globally illuminated scenes with general bidirectional scattering distribution functions, and all illumination effects that are possible thereby. Nevertheless, one of the weaknesses of this method has been that it uses a very coarse radiance estimation which may cause illumination artifacts in the vicinity of edges or corners of objects, and on surfaces with differently oriented small geometric details. Our new photon map-based radiance estimation method avoids these illumination artifacts. This is done by taking the actual geometry of the illuminated surfaces into consideration. In stochastic ray tracing-based rendering and global illumination techniques, eg. in photon map global illumination simulation, a very large number of rays have to be shot into the scene to compute the global illumination solution and/or the final image. The performance of these techniques can therefore be considerably improved by shooting the rays preferably into directions where their contribution is high. Importance sampling techniques try to do this, but the problem herein is that the contribution has to be estimated, and this of course has to be done efficiently. Our new importance sampling technique solves this problem by utilization of a particle map. The probability density function according to which the shooting direction of a ray from a point is selected is composed of adaptive footprints that the nearest neighbor particles make onto the hemisphere above the point. The rays can therefore be precisely shot into directions with high contribution. Interactive walkthroughs in a globally illuminated static scene can be realized by doing the computationally expensive global illumination simulation in a preprocessing step. The result of this step should be a representation of the global illumination that can be efficiently displayed during a following interactive walkthrough, which is rendered with graphics hardware. A major problem herein is to handle the spatially and directionally variant global illumination on glossy surfaces. Our new method for interactive walkthroughs for soft glossy scenes solves this problem with directional light maps, which are efficiently displayed with conventional graphics hardware. In large scenes, eg. in a building, where only a small part is visible from each possible viewpoint, it would be inefficient to draw all those objects that are occluded by other parts of the scene. To achieve a real-time frame-rate for interactive walkthroughs it is necessary to determine efficiently which objects are occluded, so that they can be culled. Our new conservative image-space occlusion culling method achieves this by utilization of a lazy occlusion grid that works efficiently with conventional graphics hardware. | en_US |