Show simple item record

dc.contributor.authorPalacios, Antonioen_US
dc.contributor.authorGross, Lee M.en_US
dc.contributor.authorRockwood, Alyn P.en_US
dc.date.accessioned2014-10-21T07:44:39Z
dc.date.available2014-10-21T07:44:39Z
dc.date.issued1996en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttp://dx.doi.org/10.1111/1467-8659.1540263en_US
dc.description.abstractAll but the simplest of dynamical systems contain nonlinearities that play an important role in modeling and simulating physical systems. They create unpredictable (chaotic) behavior that is often hidden or neglected in traditional solutions. A simple dynamical system, the spherical pendulum, is introduced to illustrate issues, principles, and effects of chaos in dynamics. The spherical pendulum is a two degrees of freedom nonlinear system with a pivot point in space. The equations of motion for the pendulum are derived, simulated, and animated. A periodical perturbation is applied to the pivot point producing radically different behavior.en_US
dc.publisherBlackwell Science Ltd and the Eurographics Associationen_US
dc.titleDynamics and Chaos: The Spherical Pendulumen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume15en_US
dc.description.number4en_US
dc.identifier.doi10.1111/1467-8659.1540263en_US
dc.identifier.pages263-270en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record