dc.contributor.author | Palacios, Antonio | en_US |
dc.contributor.author | Gross, Lee M. | en_US |
dc.contributor.author | Rockwood, Alyn P. | en_US |
dc.date.accessioned | 2014-10-21T07:44:39Z | |
dc.date.available | 2014-10-21T07:44:39Z | |
dc.date.issued | 1996 | en_US |
dc.identifier.issn | 1467-8659 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1111/1467-8659.1540263 | en_US |
dc.description.abstract | All but the simplest of dynamical systems contain nonlinearities that play an important role in modeling and simulating physical systems. They create unpredictable (chaotic) behavior that is often hidden or neglected in traditional solutions. A simple dynamical system, the spherical pendulum, is introduced to illustrate issues, principles, and effects of chaos in dynamics. The spherical pendulum is a two degrees of freedom nonlinear system with a pivot point in space. The equations of motion for the pendulum are derived, simulated, and animated. A periodical perturbation is applied to the pivot point producing radically different behavior. | en_US |
dc.publisher | Blackwell Science Ltd and the Eurographics Association | en_US |
dc.title | Dynamics and Chaos: The Spherical Pendulum | en_US |
dc.description.seriesinformation | Computer Graphics Forum | en_US |
dc.description.volume | 15 | en_US |
dc.description.number | 4 | en_US |
dc.identifier.doi | 10.1111/1467-8659.1540263 | en_US |
dc.identifier.pages | 263-270 | en_US |