Show simple item record

dc.contributor.authorGanapathi, Iyyakutti Iyappanen_US
dc.contributor.authorWerghi, Naoufelen_US
dc.contributor.editorBerretti, Stefanoen_US
dc.contributor.editorThehoaris, Theoharisen_US
dc.contributor.editorDaoudi, Mohameden_US
dc.contributor.editorFerrari, Claudioen_US
dc.contributor.editorVeltkamp, Remco C.en_US
dc.date.accessioned2022-08-31T07:10:19Z
dc.date.available2022-08-31T07:10:19Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-174-8
dc.identifier.issn1997-0471
dc.identifier.urihttps://doi.org/10.2312/3dor.20221181
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/3dor20221181
dc.description.abstractObject detection, recognition, segmentation, and retrieval have been at the forefront of 2D and 3D computer vision for a long time and have been utilized to address various problems in interdisciplinary domains. The 3D domain has not received as much attention as the 2D domain in several of these fields, and texture analysis in 3D is one of the least investigated. In the literature, there are several classic methods for retrieving and classifying 3D textures; however, research on facet-wise texture classification and segmentation is sparse. Moreover, in recent years deep learning excels in computer vision; utilizing its capacity for 3D texture analysis could improve performance compared to classical approaches. However, the scarcity of 3D texture data makes it challenging to employ deep learning. This paper presents a labeled 3D dataset based on already existing 3D datasets that can be utilized for texture classification, segmentation, and detection. The textures in the dataset are varied, with a wide range of surface variations. The dataset provides 3D texture surfaces annotated at the facet level, as well as fundamental geometric attributes such as curvature and shape index that can be utilized directly for further analysis. Download link for the dataset https://bit.ly/3wgSQgW.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Mesh geometry models; Mesh models
dc.subjectComputing methodologies → Mesh geometry models
dc.subjectMesh models
dc.titleLabeled Facets: New Surface Texture Dataseten_US
dc.description.seriesinformationEurographics Workshop on 3D Object Retrieval
dc.description.sectionheadersShort Papers
dc.identifier.doi10.2312/3dor.20221181
dc.identifier.pages25-30
dc.identifier.pages6 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License