Show simple item record

dc.contributor.authorPierson, Emeryen_US
dc.contributor.authorBesnier, Thomasen_US
dc.contributor.authorDaoudi, Mohameden_US
dc.contributor.authorArguillère, Sylvainen_US
dc.contributor.editorBerretti, Stefanoen_US
dc.contributor.editorThehoaris, Theoharisen_US
dc.contributor.editorDaoudi, Mohameden_US
dc.contributor.editorFerrari, Claudioen_US
dc.contributor.editorVeltkamp, Remco C.en_US
dc.date.accessioned2022-08-31T07:10:19Z
dc.date.available2022-08-31T07:10:19Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-174-8
dc.identifier.issn1997-0471
dc.identifier.urihttps://doi.org/10.2312/3dor.20221180
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/3dor20221180
dc.description.abstractThe generation of 3-dimensional geometric objects in the most efficient way is a thriving research topic with, for example, the development of geometric deep learning, extending classical machine learning concepts to non euclidean data such as graphs or meshes. In this short paper, we study the effect of a reparameterization on two popular mesh and point cloud neural networks in an auto-encoder mode: PointNet [QSMG16] and SpiralNet [BBP∗19]. Finally, we tested a modified version of PointNet that takes orientation into account (through coordinates of the normals) as a first step towards the construction of a geometric deep learning model built with a more flexible metric regarding the parameterization. The experimental results on standardized face datasets show that SpiralNet is more robust to the reparametrization than PointNet in this specific context with the proposed reparameterization.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Deep learning → 3D generative models; Performance measure → Reparameterization; Robustness
dc.subjectDeep learning → 3D generative models
dc.subjectPerformance measure → Reparameterization
dc.subjectRobustness
dc.titleParameterization Robustness of 3D Auto-Encodersen_US
dc.description.seriesinformationEurographics Workshop on 3D Object Retrieval
dc.description.sectionheadersShort Papers
dc.identifier.doi10.2312/3dor.20221180
dc.identifier.pages17-23
dc.identifier.pages7 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License