Performing Image-like Convolution on Triangular Meshes
Abstract
Image convolution with a filtering mask is at the base of several image analysis operations. This is motivated by Mathematical foundations and by the straightforward way the discrete convolution can be computed on a grid-like domain. Extending the convolution operation to the mesh manifold support is a challenging task due to the irregular structure of the mesh connections. In this paper, we propose a computational framework that allows convolutional operations on the mesh. This relies on the idea of ordering the facets of the mesh so that a shift-like operation can be derived. Experiments have been performed with several filter masks (Sobel, Gabor, etc.) showing state-of-the-art results in 3D relief patterns retrieval on the SHREC'17 dataset. We also provide evidence that the proposed framework can enable convolution and pooling-like operations as can be needed for extending Convolutional Neural Networks to 3D meshes.
BibTeX
@inproceedings {10.2312:3dor.20181060,
booktitle = {Eurographics Workshop on 3D Object Retrieval},
editor = {Telea, Alex and Theoharis, Theoharis and Veltkamp, Remco},
title = {{Performing Image-like Convolution on Triangular Meshes}},
author = {Tortorici, Claudio and Werghi, Naoufel and Berretti, Stefano},
year = {2018},
publisher = {The Eurographics Association},
ISSN = {1997-0471},
ISBN = {978-3-03868-053-6},
DOI = {10.2312/3dor.20181060}
}
booktitle = {Eurographics Workshop on 3D Object Retrieval},
editor = {Telea, Alex and Theoharis, Theoharis and Veltkamp, Remco},
title = {{Performing Image-like Convolution on Triangular Meshes}},
author = {Tortorici, Claudio and Werghi, Naoufel and Berretti, Stefano},
year = {2018},
publisher = {The Eurographics Association},
ISSN = {1997-0471},
ISBN = {978-3-03868-053-6},
DOI = {10.2312/3dor.20181060}
}