Show simple item record

dc.contributor.authorLuciano, Lorenzoen_US
dc.contributor.authorHamza, Abdessamad Benen_US
dc.contributor.editorTelea, Alex and Theoharis, Theoharis and Veltkamp, Remcoen_US
dc.date.accessioned2018-04-14T18:28:39Z
dc.date.available2018-04-14T18:28:39Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-053-6
dc.identifier.issn1997-0471
dc.identifier.urihttp://dx.doi.org/10.2312/3dor.20181049
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/3dor20181049
dc.description.abstractIn light of the increased processing power of graphics cards and the availability of large-scale datasets, deep neural networks have shown a remarkable performance in various visual computing applications. In this paper, we propose a geometric framework for unsupervised 3D shape retrieval using geodesic moments and stacked sparse autoencoders. The key idea is to learn deep shape representations in an unsupervised manner. Such discriminative shape descriptors can then be used to compute the pairwise dissimilarities between shapes in a dataset, and to find the retrieved set of the most relevant shapes to a given shape query. Experimental evaluation on three standard 3D shape benchmarks demonstrate the competitive performance of our approach in comparison with state-of-the-art techniques.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleGeodesic-based 3D Shape Retrieval Using Sparse Autoencodersen_US
dc.description.seriesinformationEurographics Workshop on 3D Object Retrieval
dc.description.sectionheadersPapers I
dc.identifier.doi10.2312/3dor.20181049
dc.identifier.pages21-28


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record