Show simple item record

dc.contributor.authorRodolà, E.en_US
dc.contributor.authorCosmo, L.en_US
dc.contributor.authorLitany, O.en_US
dc.contributor.authorBronstein, M. M.en_US
dc.contributor.authorBronstein, A. M.en_US
dc.contributor.authorAudebert, N.en_US
dc.contributor.authorHamza, A. Benen_US
dc.contributor.authorBoulch, A.en_US
dc.contributor.authorCastellani, U.en_US
dc.contributor.authorDo, M. N.en_US
dc.contributor.authorDuong, A.-D.en_US
dc.contributor.authorFuruya, T.en_US
dc.contributor.authorGasparetto, A.en_US
dc.contributor.authorHong, Y.en_US
dc.contributor.authorKim, J.en_US
dc.contributor.authorSaux, B. Leen_US
dc.contributor.authorLitman, R.en_US
dc.contributor.authorMasoumi, M.en_US
dc.contributor.authorMinello, G.en_US
dc.contributor.authorNguyen, H.-D.en_US
dc.contributor.authorNguyen, V.-T.en_US
dc.contributor.authorOhbuchi, R.en_US
dc.contributor.authorPham, V.-K.en_US
dc.contributor.authorPhan, T. V.en_US
dc.contributor.authorRezaei, M.en_US
dc.contributor.authorTorsello, A.en_US
dc.contributor.authorTran, M.-T.en_US
dc.contributor.authorTran, Q.-T.en_US
dc.contributor.authorTruong, B.en_US
dc.contributor.authorWan, L.en_US
dc.contributor.authorZou, C.en_US
dc.contributor.editorIoannis Pratikakis and Florent Dupont and Maks Ovsjanikoven_US
dc.date.accessioned2017-04-22T17:17:44Z
dc.date.available2017-04-22T17:17:44Z
dc.date.issued2017
dc.identifier.isbn978-3-03868-030-7
dc.identifier.issn1997-0471
dc.identifier.urihttp://dx.doi.org/10.2312/3dor.20171057
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/3dor20171057
dc.description.abstractPartial similarity problems arise in numerous applications that involve real data acquisition by 3D sensors, inevitably leading to missing parts due to occlusions and partial views. In this setting, the shapes to be retrieved may undergo a variety of transformations simultaneously, such as non-rigid deformations (changes in pose), topological noise, and missing parts - a combination of nuisance factors that renders the retrieval process extremely challenging. With this benchmark, we aim to evaluate the state of the art in deformable shape retrieval under such kind of transformations. The benchmark is organized in two sub-challenges exemplifying different data modalities (3D vs. 2.5D). A total of 15 retrieval algorithms were evaluated in the contest; this paper presents the details of the dataset, and shows thorough comparisons among all competing methods.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]
dc.subjectComputational Geometry and Object Modeling
dc.subjectGeometric algorithms
dc.subjectlanguages
dc.subjectand systems
dc.titleDeformable Shape Retrieval with Missing Partsen_US
dc.description.seriesinformationEurographics Workshop on 3D Object Retrieval
dc.description.sectionheadersSHREC Session II
dc.identifier.doi10.2312/3dor.20171057
dc.identifier.pages85-94


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record