Show simple item record

dc.contributor.authorMateo, Carlos M.en_US
dc.contributor.authorGil, Pabloen_US
dc.contributor.authorTorres, Fernandoen_US
dc.contributor.editorIoannis Pratikakis and Florent Dupont and Maks Ovsjanikoven_US
dc.date.accessioned2017-04-22T17:17:42Z
dc.date.available2017-04-22T17:17:42Z
dc.date.issued2017
dc.identifier.isbn978-3-03868-030-7
dc.identifier.issn1997-0471
dc.identifier.urihttp://dx.doi.org/10.2312/3dor.20171053
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/3dor20171053
dc.description.abstractThis paper presents a new 3D global feature descriptor for object recognition using shape representation on organized point clouds. Object recognition applications usually require significant speed and memory. The proposed descriptor requires 57 times less memory and it is also up to 3 times faster than the local feature descriptor in which it is based. Experimental results indicate that this new 3D global descriptor obtains better matching scores in comparison with known state-of-the-art 3D feature descriptors on two standard benchmark dataset.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleGSHOT: a Global Descriptor from SHOT to Reduce Time and Space Requirementsen_US
dc.description.seriesinformationEurographics Workshop on 3D Object Retrieval
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/3dor.20171053
dc.identifier.pages59-62


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record