Show simple item record

dc.contributor.authorO'Donovan, Peteren_US
dc.contributor.authorAgarwala, Aseemen_US
dc.contributor.authorHertzmann, Aaronen_US
dc.contributor.editorPaul Rosinen_US
dc.date.accessioned2016-02-27T19:26:40Z
dc.date.available2016-02-27T19:26:40Z
dc.date.issued2014en_US
dc.identifier.isbn978-1-4503-3019-0en_US
dc.identifier.issn1816-0859en_US
dc.identifier.urihttp://dx.doi.org/10.1145/2630099.2630100en_US
dc.description.abstractThis paper investigates individual variation in aesthetic preferences, and learns models for predicting the preferences of individual users. Preferences for color aesthetics are learned using a collaborative filtering approach on a large dataset of rated color themes/palettes. To make predictions, matrix factorization is used to estimate latent vectors for users and color themes. We also propose two extensions to the probabilistic matrix factorization framework. We first describe a feature-based model using learned transformations from feature vectors to a latent space, then extend this model to non-linear transformations using a neural network. These extensions allow our model to predict preferences for color themes not present in the training set. We find that our approach for modelling user preferences outperforms an average aesthetic model which ignores personal variation. We also use the model for measuring theme similarity and visualizing the space of color themes.en_US
dc.publisherACMen_US
dc.subjectcoloren_US
dc.subjectdesignen_US
dc.subjectmachine learningen_US
dc.subjectcollaborative filteringen_US
dc.subjectaestheticsen_US
dc.titleCollaborative filtering of color aestheticsen_US
dc.description.seriesinformationEurographics Workshop on Computational Aesthetics in Graphics, Visualization and Imagingen_US
dc.description.sectionheadersColor & perceptionen_US
dc.identifier.doi10.1145/2630099.2630100en_US
dc.identifier.pages33-40en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record