Show simple item record

dc.contributor.authorSchied, Christophen_US
dc.contributor.authorKaplanyan, Antonen_US
dc.contributor.authorWyman, Chrisen_US
dc.contributor.authorPatney, Anjulen_US
dc.contributor.authorChaitanya, Chakravarty Reddy Allaen_US
dc.contributor.authorBurgess, Johnen_US
dc.contributor.authorLiu, Shiqiuen_US
dc.contributor.authorDachsbacher, Carstenen_US
dc.contributor.authorLefohn, Aaronen_US
dc.contributor.authorSalvi, Marcoen_US
dc.contributor.editorVlastimil Havran and Karthik Vaiyanathanen_US
dc.date.accessioned2017-12-06T19:47:12Z
dc.date.available2017-12-06T19:47:12Z
dc.date.issued2017
dc.identifier.isbn978-1-4503-5101-0
dc.identifier.issn2079-8679
dc.identifier.urihttp://dx.doi.org/10.1145/3105762.3105770
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1145/3105762-3105770
dc.description.abstractWe introduce a reconstruction algorithm that generates a tempo- rally stable sequence of images from one path-per-pixel global illumination. To handle such noisy input, we use temporal accu- mulation to increase the e ective sample count and spatiotemporal luminance variance estimates to drive a hierarchical, image-space wavelet filter [Dammertz et al.2010]. This hierarchy allows us to distinguish between noise and detail at multiple scales using local luminance variance. Physically based light transport is a long-standing goal for real- time computer graphics. While modern games use limited forms of ray tracing, physically based Monte Carlo global illumination does not meet their30 Hzminimal performance requirement. Looking ahead to fully dynamic real-time path tracing, we expect this to only be feasible using a small number of paths per pixel. As such, image reconstruction using low sample counts is key to bringing path tracing to real-time. When compared to prior interactive reconstruction lters, our work gives approximately 10×more temporally stable results, matches reference images 5-47% be er (according to SSIM), and runs in just10 ms(±15%) on modern graphics hardware at 1920×1080 resolution.en_US
dc.publisherACMen_US
dc.subjectComputing methodologies
dc.subjectRay tracing
dc.subjectglobal illumination
dc.subjectreconstruction
dc.subjectreal
dc.subjecttime rendering
dc.titleSpatiotemporal Variance-Guided Filtering: Real-Time Reconstruction for Path Traced Global Illuminationen_US
dc.description.seriesinformationEurographics/ ACM SIGGRAPH Symposium on High Performance Graphics
dc.description.sectionheadersReal-Time Ray Tracing and Image Reconstruction
dc.identifier.doi10.1145/3105762.3105770


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record