Show simple item record

dc.contributor.authorHeeren, Behrenden_US
dc.contributor.authorRumpf, Martinen_US
dc.contributor.authorSchröder, Peteren_US
dc.contributor.authorWardetzky, Maxen_US
dc.contributor.authorWirth, Benedikten_US
dc.contributor.editorThomas Funkhouser and Shi-Min Huen_US
dc.date.accessioned2015-03-03T12:42:59Z
dc.date.available2015-03-03T12:42:59Z
dc.date.issued2014en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.12450en_US
dc.description.abstractWe prove both in the smooth and discrete setting that the Hessian of an elastic deformation energy results in a proper Riemannian metric on the space of shells (modulo rigid body motions). Based on this foundation we develop a time- and space-discrete geodesic calculus. In particular we show how to shoot geodesics with prescribed initial data, and we give a construction for parallel transport in shell space. This enables, for example, natural extrapolation of paths in shell space and transfer of large nonlinear deformations from one shell to another with applications in animation, geometric, and physical modeling. Finally, we examine some aspects of curvature on shell space.en_US
dc.publisherThe Eurographics Association and John Wiley and Sons Ltd.en_US
dc.titleExploring the Geometry of the Space of Shellsen_US
dc.description.seriesinformationComputer Graphics Forumen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record