Show simple item record

dc.contributor.authorWeber, Ofiren_US
dc.contributor.authorPoranne, Roien_US
dc.contributor.authorGotsman, Craigen_US
dc.contributor.editorHolly Rushmeier and Oliver Deussenen_US
dc.date.accessioned2015-02-28T08:23:24Z
dc.date.available2015-02-28T08:23:24Z
dc.date.issued2012en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttp://dx.doi.org/10.1111/j.1467-8659.2012.03130.xen_US
dc.description.abstractBarycentric coordinates are an established mathematical tool in computer graphics and geometry processing, providing a convenient way of interpolating scalar or vector data from the boundary of a planar domain to its interior. Many different recipes for barycentric coordinates exist, some offering the convenience of a closed‐form expression, some providing other desirable properties at the expense of longer computation times. For example, harmonic coordinates, which are solutions to the Laplace equation, provide a long list of desirable properties (making them suitable for a wide range of applications), but lack a closed‐form expression.We derive a new type of barycentric coordinates based on solutions to the biharmonic equation. These coordinates can be considered a natural generalization of harmonic coordinates, with the additional ability to interpolate boundary derivative data. We provide an efficient and accurate way to numerically compute the biharmonic coordinates and demonstrate their advantages over existing schemes. We show that biharmonic coordinates are especially appealing for (but not limited to) 2D shape and image deformation and have clear advantages over existing deformation methods.Barycentric coordinates are an established mathematical tool in computer graphics and geometry processing, providing a convenient way of interpolating scalar or vector data from the boundary of a planar domain to its interior. We derive a new type of barycentric coordinates based on solutions to the biharmonic equation. These coordinates can be considered a natural generalization of harmonic coordinates, with the additional ability to interpolate boundary derivative data.en_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltd.en_US
dc.titleBiharmonic Coordinatesen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume31
dc.description.number8


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record