Show simple item record

dc.contributor.authorBerger, Matthewen_US
dc.contributor.authorSilva, Claudio T.en_US
dc.contributor.editorP. Cignoni and T. Ertlen_US
dc.date.accessioned2015-02-28T06:57:26Z
dc.date.available2015-02-28T06:57:26Z
dc.date.issued2012en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttp://dx.doi.org/10.1111/j.1467-8659.2012.03060.xen_US
dc.description.abstractWe introduce the medial kernel, an association measure which provides for a robust construction of volume-aware distances defined directly on point clouds. The medial kernel is a similarity measure defined as the likelihood of two points belonging to a common interior medial ball. We use the medial kernel to construct a random walk on the point cloud, where movement in the walk is restricted to regions containing similar medial balls. Our distances are defined as the diffusion distances of this random walk, assigning low distance to points belonging to similar medial regions. These distances allow for a robust means of processing incomplete point clouds, capable of distinguishing nearby yet separate undersampled components, while also associating points which are far in Euclidean distance yet mutually share an interior volume. We leverage these distances for several applications: volumetric part segmentation, the construction of function bases, and reconstruction-by-parts - a surface reconstruction method which adheres to the medial kernel.en_US
dc.publisherThe Eurographics Association and John Wiley and Sons Ltd.en_US
dc.titleMedial Kernelsen_US
dc.description.seriesinformationComputer Graphics Forumen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record