Show simple item record

dc.contributor.authorYe, Xingyuen_US
dc.contributor.authorWang, Xiaokunen_US
dc.contributor.authorXu, Yanruien_US
dc.contributor.authorKosinka, Jirien_US
dc.contributor.authorTelea, Alexandru C.en_US
dc.contributor.authorYou, Lihuaen_US
dc.contributor.authorZhang, Jian Junen_US
dc.contributor.authorChang, Jianen_US
dc.contributor.editorBermano, Amit H.en_US
dc.contributor.editorKalogerakis, Evangelosen_US
dc.date.accessioned2024-04-16T14:40:24Z
dc.date.available2024-04-16T14:40:24Z
dc.date.issued2024
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.15024
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf15024
dc.description.abstractFor vortex particle methods relying on SPH-based simulations, the direct approach of iterating all fluid particles to capture velocity from vorticity can lead to a significant computational overhead during the Biot-Savart summation process. To address this challenge, we present a Monte Carlo vortical smoothed particle hydrodynamics (MCVSPH) method for efficiently simulating turbulent flows within an SPH framework. Our approach harnesses a Monte Carlo estimator and operates exclusively within a pre-sampled particle subset, thus eliminating the need for costly global iterations over all fluid particles. Our algorithm is decoupled from various projection loops which enforce incompressibility, independently handles the recovery of turbulent details, and seamlessly integrates with state-of-the-art SPH-based incompressibility solvers. Our approach rectifies the velocity of all fluid particles based on vorticity loss to respect the evolution of vorticity, effectively enforcing vortex motions. We demonstrate, by several experiments, that our MCVSPH method effectively preserves vorticity and creates visually prominent vortical motions.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Physical simulation
dc.subjectComputing methodologies
dc.subjectPhysical simulation
dc.titleMonte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flowsen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersFluid Simulation
dc.description.volume43
dc.description.number2
dc.identifier.doi10.1111/cgf.15024
dc.identifier.pages12 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License