Show simple item record

dc.contributor.authorSchor, Alexa L.en_US
dc.contributor.authorKim, Theodoreen_US
dc.contributor.editorMemari, Pooranen_US
dc.contributor.editorSolomon, Justinen_US
dc.date.accessioned2023-06-30T06:18:57Z
dc.date.available2023-06-30T06:18:57Z
dc.date.issued2023
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14905
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14905
dc.description.abstractWe present an efficient new method for computing Mandelbrot-like fractals (Julia sets) that approximate a user-defined shape. Our algorithm is orders of magnitude faster than previous methods, as it entirely sidesteps the need for a time-consuming numerical optimization. It is also more robust, succeeding on shapes where previous approaches failed. The key to our approach is a versor-modulus analysis of fractals that allows us to formulate a novel shape modulus function that directly controls the broad shape of a Julia set, while keeping fine-grained fractal details intact. Our formulation contains flexible artistic controls that allow users to seamlessly add fractal detail to desired spatial regions, while transitioning back to the original shape in others. No previous approach allows Mandelbrot-like details to be ''painted'' onto meshes.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies -> Computer graphics; Shape modeling
dc.subjectComputing methodologies
dc.subjectComputer graphics
dc.subjectShape modeling
dc.titleA Shape Modulus for Fractal Geometry Generationen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersDetails on Surfaces
dc.description.volume42
dc.description.number5
dc.identifier.doi10.1111/cgf.14905
dc.identifier.pages9 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 42-Issue 5
    Geometry Processing 2023 - Symposium Proceedings

Show simple item record