Show simple item record

dc.contributor.authorHorák, Jiríen_US
dc.contributor.authorFurmanová, Katarínaen_US
dc.contributor.authorKozlíková, Barboraen_US
dc.contributor.authorBrázdil, Tomášen_US
dc.contributor.authorHolub, Petren_US
dc.contributor.authorKacenga, Martinen_US
dc.contributor.authorGallo, Matejen_US
dc.contributor.authorNenutil, Rudolfen_US
dc.contributor.authorByška, Janen_US
dc.contributor.authorRusnak, Viten_US
dc.contributor.editorBujack, Roxanaen_US
dc.contributor.editorArchambault, Danielen_US
dc.contributor.editorSchreck, Tobiasen_US
dc.date.accessioned2023-06-10T06:16:22Z
dc.date.available2023-06-10T06:16:22Z
dc.date.issued2023
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14812
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14812
dc.description.abstractHistopathology research quickly evolves thanks to advances in whole slide imaging (WSI) and artificial intelligence (AI). However, existing WSI viewers are tailored either for clinical or research environments, but none suits both. This hinders the adoption of new methods and communication between the researchers and clinicians. The paper presents xOpat, an open-source, browserbased WSI viewer that addresses these problems. xOpat supports various data sources, such as tissue images, pathologists' annotations, or additional data produced by AI models. Furthermore, it provides efficient rendering of multiple data layers, their visual representations, and tools for annotating and presenting findings. Thanks to its modular, protocol-agnostic, and extensible architecture, xOpat can be easily integrated into different environments and thus helps to bridge the gap between research and clinical practice. To demonstrate the utility of xOpat, we present three case studies, one conducted with a developer of AI algorithms for image segmentation and two with a research pathologist.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectCCS Concepts: Human-centered computing -> Visualization systems and tools; Scientific visualization
dc.subjectHuman centered computing
dc.subjectVisualization systems and tools
dc.subjectScientific visualization
dc.titlexOpat: eXplainable Open Pathology Analysis Toolen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersScalar and Vector Fields
dc.description.volume42
dc.description.number3
dc.identifier.doi10.1111/cgf.14812
dc.identifier.pages63-73
dc.identifier.pages11 pages


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 42-Issue 3
    EuroVis 2023 - Conference Proceedings

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License