Show simple item record

dc.contributor.authorZellmann, Stefanen_US
dc.contributor.authorWu, Qien_US
dc.contributor.authorMa, Kwan-Liuen_US
dc.contributor.authorWald, Ingoen_US
dc.contributor.editorBujack, Roxanaen_US
dc.contributor.editorArchambault, Danielen_US
dc.contributor.editorSchreck, Tobiasen_US
dc.date.accessioned2023-06-10T06:16:13Z
dc.date.available2023-06-10T06:16:13Z
dc.date.issued2023
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14811
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14811
dc.description.abstractA common way to render cell-centric adaptive mesh refinement (AMR) data is to compute the dual mesh and visualize that with a standard unstructured element renderer. While the dual mesh provides a high-quality interpolator, the memory requirements of the dual mesh data structure are significantly higher than those of the original grid, which prevents rendering very large data sets. We introduce a GPU-friendly data structure and a clustering algorithm that allow for efficient AMR dual mesh rendering with a competitive memory footprint. Fundamentally, any off-the-shelf unstructured element renderer running on GPUs could be extended to support our data structure just by adding a gridlet element type in addition to the standard tetrahedra, pyramids, wedges, and hexahedra supported by default. We integrated the data structure into a volumetric path tracer to compare it to various state-of-the-art unstructured element sampling methods. We show that our data structure easily competes with these methods in terms of rendering performance, but is much more memory-efficient.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.titleMemory-Efficient GPU Volume Path Tracing of AMR Data Using the Dual Meshen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersScalar and Vector Fields
dc.description.volume42
dc.description.number3
dc.identifier.doi10.1111/cgf.14811
dc.identifier.pages51-62
dc.identifier.pages12 pages


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 42-Issue 3
    EuroVis 2023 - Conference Proceedings

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License