Show simple item record

dc.contributor.authorAtanasov, Asenen_US
dc.contributor.authorKoylazov, Vladimiren_US
dc.contributor.authorDimov, Rossenen_US
dc.contributor.authorWilkie, Alexanderen_US
dc.contributor.editorGhosh, Abhijeeten_US
dc.contributor.editorWei, Li-Yien_US
dc.date.accessioned2022-07-01T15:36:53Z
dc.date.available2022-07-01T15:36:53Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14590
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14590
dc.description.abstractWe derive a general result in microfacet theory: given an arbitrary microsurface defined via standard microfacet statistics, we show how to construct the statistics of its linearly transformed counterparts. A common use case of such transformations is to generate anisotropic versions of a given surface. Traditional anisotropic derivations based on varying the roughness of an isotropic distribution in an ellipse have a general closed-form formula only for the subclass of shape-invariant distributions. While our formulation is equivalent to these specific constructs, it is more general in two aspects: it leads to simple closedform solutions for all distributions, including shape-variant ones, and works for all invertible 2D transform matrices. The latter is of particular importance in case of deformation of the macrosurface, since it can be approximated locally by a linear transformation in the tangent plane. We demonstrate our results using the Generalized Trowbridge-Reitz (GTR) distribution which is shape-invariant only in the special case of the popular Trowbridge-Reitz (GGX) distribution.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies --> Rendering; Reflectance modeling
dc.subjectComputing methodologies
dc.subjectRendering
dc.subjectReflectance modeling
dc.titleMicrosurface Transformationsen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersBXDFs
dc.description.volume41
dc.description.number4
dc.identifier.doi10.1111/cgf.14590
dc.identifier.pages105-116
dc.identifier.pages12 pages


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 41-Issue 4
    Rendering 2022 - Symposium Proceedings

Show simple item record