Show simple item record

dc.contributor.authorWeiss, S.en_US
dc.contributor.authorHermüller, P.en_US
dc.contributor.authorWestermann, R.en_US
dc.contributor.editorHauser, Helwig and Alliez, Pierreen_US
dc.date.accessioned2022-10-11T05:24:56Z
dc.date.available2022-10-11T05:24:56Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14578
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14578
dc.description.abstractDespite the potential of neural scene representations to effectively compress 3D scalar fields at high reconstruction quality, the computational complexity of the training and data reconstruction step using scene representation networks limits their use in practical applications. In this paper, we analyse whether scene representation networks can be modified to reduce these limitations and whether such architectures can also be used for temporal reconstruction tasks. We propose a novel design of scene representation networks using GPU tensor cores to integrate the reconstruction seamlessly into on‐chip raytracing kernels, and compare the quality and performance of this network to alternative network‐ and non‐network‐based compression schemes. The results indicate competitive quality of our design at high compression rates, and significantly faster decoding times and lower memory consumption during data reconstruction. We investigate how density gradients can be computed using the network and show an extension where density, gradient and curvature are predicted jointly. As an alternative to spatial super‐resolution approaches for time‐varying fields, we propose a solution that builds upon latent‐space interpolation to enable random access reconstruction at arbitrary granularity. We summarize our findings in the form of an assessment of the strengths and limitations of scene representation networks for compression domain volume rendering, and outline future research directions. Source code:en_US
dc.publisher© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.en_US
dc.subjectvolume rendering
dc.subjectneural networks
dc.subjectcompression algorithms
dc.titleFast Neural Representations for Direct Volume Renderingen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersArticles
dc.description.volume41
dc.description.number6
dc.identifier.doi10.1111/cgf.14578
dc.identifier.pages196-211


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record