Show simple item record

dc.contributor.authorBekos, M.A.en_US
dc.contributor.authorDekker, D.J.C.en_US
dc.contributor.authorFrank, F.en_US
dc.contributor.authorMeulemans, W.en_US
dc.contributor.authorRodgers, P.en_US
dc.contributor.authorSchulz, A.en_US
dc.contributor.authorWessel, S.en_US
dc.contributor.editorHauser, Helwig and Alliez, Pierreen_US
dc.date.accessioned2022-10-11T05:24:58Z
dc.date.available2022-10-11T05:24:58Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14497
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14497
dc.description.abstractSet systems can be visualized in various ways. An important distinction between techniques is whether the elements have a spatial location that is to be used for the visualization; for example, the elements are cities on a map. Strictly adhering to such location may severely limit the visualization and force overlay, intersections and other forms of clutter. On the other hand, completely ignoring the spatial dimension omits information and may hide spatial patterns in the data. We study layouts for set systems (or hypergraphs) in which spatial locations are displaced onto concentric circles or a grid, to obtain schematic set visualizations. We investigate the tractability of the underlying algorithmic problems adopting different optimization criteria (e.g. crossings or bends) for the layout structure, also known as the support of the hypergraph. Furthermore, we describe a simulated‐annealing approach to heuristically optimize a combination of such criteria. Using this method in computational experiments, we explore the trade‐offs and dependencies between criteria for computing high‐quality schematic set visualizations.en_US
dc.publisher© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.en_US
dc.subjectinformation visualization
dc.subjecthypergraph drawing
dc.subjectvisualization
dc.subjectcomputational geometry
dc.subjectmodelling
dc.titleComputing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Gridsen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersMajor Revision from EuroVis Symposium
dc.description.volume41
dc.description.number6
dc.identifier.doi10.1111/cgf.14497
dc.identifier.pages316-335


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record