Augmenting Digital Sheet Music through Visual Analytics
Abstract
Music analysis tasks, such as structure identification and modulation detection, are tedious when performed manually due to the complexity of the common music notation (CMN). Fully automated analysis instead misses human intuition about relevance. Existing approaches use abstract data‐driven visualizations to assist music analysis but lack a suitable connection to the CMN. Therefore, music analysts often prefer to remain in their familiar context. Our approach enhances the traditional analysis workflow by complementing CMN with interactive visualization entities as minimally intrusive augmentations. Gradual step‐wise transitions empower analysts to retrace and comprehend the relationship between the CMN and abstract data representations. We leverage glyph‐based visualizations for harmony, rhythm and melody to demonstrate our technique's applicability. Design‐driven visual query filters enable analysts to investigate statistical and semantic patterns on various abstraction levels. We conducted pair analytics sessions with 16 participants of different proficiency levels to gather qualitative feedback about the intuitiveness, traceability and understandability of our approach. The results show that MusicVis supports music analysts in getting new insights about feature characteristics while increasing their engagement and willingness to explore.
BibTeX
@article {10.1111:cgf.14436,
journal = {Computer Graphics Forum},
title = {{Augmenting Digital Sheet Music through Visual Analytics}},
author = {Miller, Matthias and Fürst, Daniel and Hauptmann, Hanna and Keim, Daniel A. and El‐Assady, Mennatallah},
year = {2022},
publisher = {© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd},
ISSN = {1467-8659},
DOI = {10.1111/cgf.14436}
}
journal = {Computer Graphics Forum},
title = {{Augmenting Digital Sheet Music through Visual Analytics}},
author = {Miller, Matthias and Fürst, Daniel and Hauptmann, Hanna and Keim, Daniel A. and El‐Assady, Mennatallah},
year = {2022},
publisher = {© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd},
ISSN = {1467-8659},
DOI = {10.1111/cgf.14436}
}
Collections
Related items
Showing items related by title, author, creator and subject.
-
Visualizing for the Non-Visual: Enabling the Visually Impaired to Use Visualization
Choi, Jinho; Jung, Sanghun; Park, Deok Gun; Choo, Jaegul; Elmqvist, Niklas (The Eurographics Association and John Wiley & Sons Ltd., 2019)The majority of visualizations on the web are still stored as raster images, making them inaccessible to visually impaired users. We propose a deep-neural-network-based approach that automatically recognizes key elements ... -
Query by Visual Words: Visual Search for Scatter Plot Visualizations
Shao, Lin; Schleicher, Timo; Schreck, Tobias (The Eurographics Association, 2016)Finding interesting views in large collections of data visualizations, e.g., scatter plots, is challenging. Recently, ranking views based on heuristic quality measures has been proposed. However, quality measures may fail ... -
Steering the Craft: UI Elements and Visualizations for Supporting Progressive Visual Analytics
Badam, Sriram Karthik; Elmqvist, Niklas; Fekete, Jean-Daniel (The Eurographics Association and John Wiley & Sons Ltd., 2017)Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then ...