Show simple item record

dc.contributor.authorDupuy, Jonathanen_US
dc.contributor.authorVanhoey, Kennethen_US
dc.contributor.editorBinder, Nikolaus and Ritschel, Tobiasen_US
dc.date.accessioned2021-07-05T07:44:00Z
dc.date.available2021-07-05T07:44:00Z
dc.date.issued2021
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14381
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14381
dc.description.abstractWe show that Catmull-Clark subdivision induces an invariant one-to-four refinement rule for halfedges that reduces to simple algebraic expressions. This has two important consequences. First, it allows to refine the halfedges of the input mesh, which completely describe its topology, concurrently in breadth-first order. Second, it makes the computation of the vertex points straightforward as the halfedges provide all the information that is needed. We leverage these results to derive a novel parallel implementation of Catmull-Clark subdivision suitable for the GPU. Our implementation supports non-quad faces, extraordinary vertices, boundaries and semi-sharp creases seamlessly. Moreover, we show that its speed scales linearly with the number of processors, and yields state-of-the-art performances on modern GPUs.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectComputing methodologies
dc.subjectMassively parallel algorithms
dc.subjectRendering
dc.titleA Halfedge Refinement Rule for Parallel Catmull-Clark Subdivisionen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersGeometry and Optimization
dc.description.volume40
dc.description.number8
dc.identifier.doi10.1111/cgf.14381
dc.identifier.pages57-70


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record