Show simple item record

dc.contributor.authorHuang, Xinyien_US
dc.contributor.authorJamonnak, Suphanuten_US
dc.contributor.authorZhao, Yeen_US
dc.contributor.authorWu, Tsung Hengen_US
dc.contributor.authorXu, Weien_US
dc.contributor.editorBorgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonen_US
dc.date.accessioned2021-06-12T11:01:38Z
dc.date.available2021-06-12T11:01:38Z
dc.date.issued2021
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14302
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14302
dc.description.abstractLayer-wise Relevance Propagation (LRP) is an emerging and widely-used method for interpreting the prediction results of convolutional neural networks (CNN). LRP developers often select and employ different relevance backpropagation rules and parameters, to compute relevance scores on input images. However, there exists no obvious solution to define a ''best'' LRP model. A satisfied model is highly reliant on pertinent images and designers' goals. We develop a visual model designer, named as VisLRPDesigner, to overcome the challenges in the design and use of LRP models. Various LRP rules are unified into an integrated framework with an intuitive workflow of parameter setup. VisLRPDesigner thus allows users to interactively configure and compare LRP models. It also facilitates relevance-based visual analysis with two important functions: relevance-based pixel flipping and neuron ablation. Several use cases illustrate the benefits of VisLRPDesigner. The usability and limitation of the visual designer is evaluated by LRP users.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.titleA Visual Designer of Layer-wise Relevance Propagation Modelsen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersMachine Learning and Explainable AI
dc.description.volume40
dc.description.number3
dc.identifier.doi10.1111/cgf.14302
dc.identifier.pages227-238


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 40-Issue 3
    EuroVis 2021 - Conference Proceedings

Show simple item record