Show simple item record

dc.contributor.authorModi, V.en_US
dc.contributor.authorFulton, L.en_US
dc.contributor.authorJacobson, A.en_US
dc.contributor.authorSueda, S.en_US
dc.contributor.authorLevin, D.I.W.en_US
dc.contributor.editorBenes, Bedrich and Hauser, Helwigen_US
dc.date.accessioned2021-02-27T19:02:30Z
dc.date.available2021-02-27T19:02:30Z
dc.date.issued2021
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14185
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14185
dc.description.abstractEMU is an efficient and scalable model to simulate bulk musculoskeletal motion with heterogenous materials. First, EMU requires no model reductions, or geometric coarsening, thereby producing results visually accurate when compared to an FEM simulation. Second, EMU is efficient and scales much better than state‐of‐the‐art FEM with the number of elements in the mesh, and is more easily parallelizable. Third, EMU can handle heterogeneously stiff meshes with an arbitrary constitutive model, thus allowing it to simulate soft muscles, stiff tendons and even stiffer bones all within one unified system. These three key characteristics of EMU enable us to efficiently orchestrate muscle activated skeletal movements. We demonstrate the efficacy of our approach via a number of examples with tendons, muscles, bones and joints.en_US
dc.publisher© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltden_US
dc.subjectEfficient Muscle Simulation
dc.titleEMU: Efficient Muscle Simulation in Deformation Spaceen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersArticles
dc.description.volume40
dc.description.number1
dc.identifier.doi10.1111/cgf.14185
dc.identifier.pages234-248


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record