Show simple item record

dc.contributor.authorQin, Hongxingen_US
dc.contributor.authorZhang, Songshanen_US
dc.contributor.authorLiu, Qihuangen_US
dc.contributor.authorChen, Lien_US
dc.contributor.authorChen, Baoquanen_US
dc.contributor.editorEisemann, Elmar and Jacobson, Alec and Zhang, Fang-Lueen_US
dc.date.accessioned2020-10-29T18:50:58Z
dc.date.available2020-10-29T18:50:58Z
dc.date.issued2020
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14151
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14151
dc.description.abstractA 3D human skeleton plays important roles in human shape reconstruction and human animation. Remarkable advances have been achieved recently in 3D human skeleton estimation from color and depth images via a powerful deep convolutional neural network. However, applying deep learning frameworks to 3D human skeleton extraction from point clouds remains challenging because of the sparsity of point clouds and the high nonlinearity of human skeleton regression. In this study, we develop a deep learning-based approach for 3D human skeleton extraction from point clouds. We convert 3D human skeleton extraction into offset vector regression and human body segmentation via deep learning-based point cloud contraction. Furthermore, a disambiguation strategy is adopted to improve the robustness of joint points regression. Experiments on the public human pose dataset UBC3V and the human point cloud skeleton dataset 3DHumanSkeleton compiled by the authors show that the proposed approach outperforms the state-of-the-art methods.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectComputing methodologies
dc.subjectCollision detection
dc.subjectHardware
dc.subjectSensors and actuators
dc.subjectPCB design and layout
dc.titlePointSkelCNN: Deep Learning-Based 3D Human Skeleton Extraction from Point Cloudsen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersHuman Pose
dc.description.volume39
dc.description.number7
dc.identifier.doi10.1111/cgf.14151
dc.identifier.pages363-374


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • 39-Issue 7
    Pacific Graphics 2020 - Symposium Proceedings

Show simple item record