Image-Driven Furniture Style for Interactive 3D Scene Modeling
Abstract
Creating realistic styled spaces is a complex task, which involves design know-how for what furniture pieces go well together. Interior style follows abstract rules involving color, geometry and other visual elements. Following such rules, users manually select similar-style items from large repositories of 3D furniture models, a process which is both laborious and time-consuming. We propose a method for fast-tracking style-similarity tasks, by learning a furniture's style-compatibility from interior scene images. Such images contain more style information than images depicting single furniture. To understand style, we train a deep learning network on a classification task. Based on image embeddings extracted from our network, we measure stylistic compatibility of furniture. We demonstrate our method with several 3D model style-compatibility results, and with an interactive system for modeling style-consistent scenes.
BibTeX
@article {10.1111:cgf.14126,
journal = {Computer Graphics Forum},
title = {{Image-Driven Furniture Style for Interactive 3D Scene Modeling}},
author = {Weiss, Tomer and Yildiz, Ilkay and Agarwal, Nitin and Ataer-Cansizoglu, Esra and Choi, Jae-Woo},
year = {2020},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.14126}
}
journal = {Computer Graphics Forum},
title = {{Image-Driven Furniture Style for Interactive 3D Scene Modeling}},
author = {Weiss, Tomer and Yildiz, Ilkay and Agarwal, Nitin and Ataer-Cansizoglu, Esra and Choi, Jae-Woo},
year = {2020},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.14126}
}