dc.description.abstract | This paper presents subdivision‐based representations for both lighting and geometry in shape‐from‐shading. A very recent shading‐based method introduced a per‐vertex overall illumination model for surface reconstruction, which has advantage of conveniently handling complicated lighting condition and avoiding explicit estimation of visibility and varied albedo. However, due to its discrete nature, the per‐vertex overall illumination requires a large amount of memory and lacks intrinsic coherence. To overcome these problems, in this paper we propose to use classic subdivision to define the basic smooth lighting function and surface, and introduce additional independent variables into the subdivision to adaptively model sharp changes of illumination and geometry. Compared to previous works, the new model not only preserves the merits of the per‐vertex illumination model, but also greatly reduces the number of variables required in surface recovery and intrinsically regularizes the illumination vectors and the surface. These features make the new model very suitable for multi‐view stereo surface reconstruction under general, unknown illumination condition. Particularly, a variational surface reconstruction method built upon the subdivision representations for lighting and geometry is developed. The experiments on both synthetic and real‐world data sets have demonstrated that the proposed method can achieve memory efficiency and improve surface detail recovery.This paper presents subdivision‐based representations for both lighting and geometry in shape‐from‐shading. A very recent shading‐based method introduced a per‐vertex overall illumination model for surface reconstruction, which has advantage of conveniently handling complicated lighting condition and avoiding explicit estimation of visibility and varied albedo. However, due to its discrete nature, the per‐vertex overall illumination requires a large amount of memory and lacks intrinsic coherence. To overcome these problems, in this paper we propose to use classic subdivision to define the basic smooth lighting function and surface, and introduce additional independent variables into the subdivision to adaptively model sharp changes of illumination and geometry. Compared to previous works, the new model not only preserves the merits of the per‐vertex illumination model, but also greatly reduces the number of variables required in surface recovery and intrinsically regularizes the illumination vectors and the surface. These features make the new model very suitable for multi‐view stereo surface reconstruction under general, unknown illumination condition. Particularly, a variational surface reconstruction method built upon the subdivision representations for lighting and geometry is developed. The experiments on both synthetic and real‐world data sets have demonstrated that the proposed method can achieve memory efficiency and improve surface detail recovery. | en_US |