On Visualizing Continuous Turbulence Scales
Abstract
Turbulent flows are multi‐scale with vortices spanning a wide range of scales continuously. Due to such complexities, turbulence scales are particularly difficult to analyse and visualize. In this work, we present a novel and efficient optimization‐based method for turbulence structure visualization with scale decomposition directly in the Kolmogorov energy spectrum. To achieve this, we first derive a new analytical objective function based on integration approximation. Using this new formulation, we can significantly improve the efficiency of the underlying optimization process and obtain the desired filter in the Kolmogorov energy spectrum for scale decomposition. More importantly, such a decomposition allows a ‘continuous‐scale visualization’ that enables us to efficiently explore the decomposed turbulence scales and further analyse the turbulence structures in a continuous manner. With our approach, we can present scale visualizations of direct numerical simulation data sets continuously over the scale domain for both isotropic and boundary layer turbulent flows. Compared with previous works on multi‐scale turbulence analysis and visualization, our method is highly flexible and efficient in generating scale decomposition and visualization results. The application of the proposed technique to both isotropic and boundary layer turbulence data sets verifies the capability of our technique to produce desirable scale visualization results.Turbulent flows are multi‐scale with vortices spanning a wide range of scales continuously. Due to such complexities, turbulence scales are particularly difficult to analyse and visualize. In this work, we present a novel and efficient optimization‐based method for turbulence structure visualization with scale decomposition directly in the Kolmogorov energy spectrum. To achieve this, we first derive a new analytical objective function based on integration approximation. Using this new formulation, we can significantly improve the efficiency of the underlying optimization process and obtain the desired filter in the Kolmogorov energy spectrum for scale decomposition. More importantly, such a decomposition allows a ‘continuous‐scale visualization’ that enables us to efficiently explore the decomposed turbulence scales and further analyse the turbulence structures in a continuous manner. With our approach, we can present scale visualizations of direct numerical simulation data sets continuously over the scale domain for both isotropic and boundary layer turbulent flows.
BibTeX
@article {10.1111:cgf.13532,
journal = {Computer Graphics Forum},
title = {{On Visualizing Continuous Turbulence Scales}},
author = {Liu, Xiaopei and Mishra, Maneesh and Skote, Martin and Fu, Chi‐Wing},
year = {2019},
publisher = {© 2019 The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.13532}
}
journal = {Computer Graphics Forum},
title = {{On Visualizing Continuous Turbulence Scales}},
author = {Liu, Xiaopei and Mishra, Maneesh and Skote, Martin and Fu, Chi‐Wing},
year = {2019},
publisher = {© 2019 The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.13532}
}
Collections
Related items
Showing items related by title, author, creator and subject.
-
Visualizing for the Non-Visual: Enabling the Visually Impaired to Use Visualization
Choi, Jinho; Jung, Sanghun; Park, Deok Gun; Choo, Jaegul; Elmqvist, Niklas (The Eurographics Association and John Wiley & Sons Ltd., 2019)The majority of visualizations on the web are still stored as raster images, making them inaccessible to visually impaired users. We propose a deep-neural-network-based approach that automatically recognizes key elements ... -
Query by Visual Words: Visual Search for Scatter Plot Visualizations
Shao, Lin; Schleicher, Timo; Schreck, Tobias (The Eurographics Association, 2016)Finding interesting views in large collections of data visualizations, e.g., scatter plots, is challenging. Recently, ranking views based on heuristic quality measures has been proposed. However, quality measures may fail ... -
Steering the Craft: UI Elements and Visualizations for Supporting Progressive Visual Analytics
Badam, Sriram Karthik; Elmqvist, Niklas; Fekete, Jean-Daniel (The Eurographics Association and John Wiley & Sons Ltd., 2017)Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then ...