Show simple item record

dc.contributor.authorBoulch, Alexandreen_US
dc.contributor.authorMarlet, Renauden_US
dc.contributor.editorMaks Ovsjanikov and Daniele Panozzoen_US
dc.date.accessioned2016-06-17T14:12:12Z
dc.date.available2016-06-17T14:12:12Z
dc.date.issued2016en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.12983en_US
dc.description.abstractNormal estimation in point clouds is a crucial first step for numerous algorithms, from surface reconstruction and scene understanding to rendering. A recurrent issue when estimating normals is to make appropriate decisions close to sharp features, not to smooth edges, or when the sampling density is not uniform, to prevent bias. Rather than resorting to manually-designed geometric priors, we propose to learn how to make these decisions, using ground-truth data made from synthetic scenes. For this, we project a discretized Hough space representing normal directions onto a structure amenable to deep learning. The resulting normal estimation method outperforms most of the time the state of the art regarding robustness to outliers, to noise and to point density variation, in the presence of sharp edges, while remaining fast, scaling up to millions of points.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjecten_US
dc.titleDeep Learning for Robust Normal Estimation in Unstructured Point Cloudsen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.sectionheadersDifferential Propertiesen_US
dc.description.volume35en_US
dc.description.number5en_US
dc.identifier.doi10.1111/cgf.12983en_US
dc.identifier.pages281-290en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record