Show simple item record

dc.contributor.authorHeeren, Behrenden_US
dc.contributor.authorRumpf, Martinen_US
dc.contributor.authorSchröder, Peteren_US
dc.contributor.authorWardetzky, Maxen_US
dc.contributor.authorWirth, Benedikten_US
dc.contributor.editorMaks Ovsjanikov and Daniele Panozzoen_US
dc.date.accessioned2016-06-17T14:11:55Z
dc.date.available2016-06-17T14:11:55Z
dc.date.issued2016en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.12968en_US
dc.description.abstractCubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time-discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors-edge lengths, dihedral angles, and triangle areas-results in a simplified interpolation method with high computational efficiency.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectI.3.3 [Computer Graphics]en_US
dc.subjectPicture/Image Generationen_US
dc.subjectLine and curve generationen_US
dc.titleSplines in the Space of Shellsen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.sectionheadersModeling and Designen_US
dc.description.volume35en_US
dc.description.number5en_US
dc.identifier.doi10.1111/cgf.12968en_US
dc.identifier.pages111-120en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record