Show simple item record

dc.contributor.authorHerholz, Philippen_US
dc.contributor.authorKyprianidis, Jan Ericen_US
dc.contributor.authorAlexa, Marcen_US
dc.contributor.editorMirela Ben-Chen and Ligang Liuen_US
dc.date.accessioned2015-07-06T05:01:11Z
dc.date.available2015-07-06T05:01:11Z
dc.date.issued2015en_US
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.12709en_US
dc.description.abstractA discrete Laplace-Beltrami operator is called perfect if it possesses all the important properties of its smooth counterpart. It is known which triangle meshes admit perfect Laplace operators and how to fix any other mesh by changing the combinatorics. We extend the characterization of meshes that admit perfect Laplacians to general polygon meshes. More importantly, we provide an algorithm that computes a perfect Laplace operator for any polygon mesh without changing the combinatorics, although, possibly changing the embedding. We evaluate this algorithm and demonstrate it at applications.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.titlePerfect Laplacians for Polygon Meshesen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.sectionheadersQuads and Polygonsen_US
dc.description.volume34en_US
dc.description.number5en_US
dc.identifier.doi10.1111/cgf.12709en_US
dc.identifier.pages211-218en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record