Show simple item record

dc.contributor.authorKazhdan, Mishaen_US
dc.contributor.editorMirela Ben-Chen and Ligang Liuen_US
dc.date.accessioned2015-07-06T05:00:51Z
dc.date.available2015-07-06T05:00:51Z
dc.date.issued2015en_US
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.12704en_US
dc.description.abstractIn computer graphics, numerous geometry processing applications reduce to the solution of a Poisson equation. When considering geometries with symmetry, a natural question to consider is whether and how the symmetry can be leveraged to derive an efficient solver for the underlying system of linear equations. In this work we provide a simple representation-theoretic analysis that demonstrates how symmetries of the geometry translate into block diagonalization of the linear operators and we show how this results in efficient linear solvers for surfaces of revolution with and without angular boundaries.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectGeometric algorithmsen_US
dc.subjectlanguagesen_US
dc.subjectand systemsen_US
dc.subjectFluid Simulationen_US
dc.titleFast and Exact (Poisson) Solvers on Symmetric Geometriesen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.sectionheadersNumerical Methods for Geometry Processingen_US
dc.description.volume34en_US
dc.description.number5en_US
dc.identifier.doi10.1111/cgf.12704en_US
dc.identifier.pages153-165en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record