Show simple item record

dc.contributor.authorWeber, Danielen_US
dc.contributor.authorMueller-Roemer, Johannesen_US
dc.contributor.authorStork, Andréen_US
dc.contributor.authorFellner, Dieter W.en_US
dc.contributor.editorOlga Sorkine-Hornung and Michael Wimmeren_US
dc.date.accessioned2015-04-16T07:45:40Z
dc.date.available2015-04-16T07:45:40Z
dc.date.issued2015en_US
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.12577en_US
dc.description.abstractWe present a novel multigrid scheme based on a cut-cell formulation on regular staggered grids which generates compatible systems of linear equations on all levels of the multigrid hierarchy. This geometrically motivated formulation is derived from a finite volume approach and exhibits an improved rate of convergence compared to previous methods. Existing fluid solvers with voxelized domains can directly benefit from this approach by only modifying the representation of the non-fluid domain. The necessary building blocks are fully parallelizable and can therefore benefit from multi- and many-core architectures.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.titleA Cut-Cell Geometric Multigrid Poisson Solver for Fluid Simulationen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.sectionheadersFluids & Flowsen_US
dc.description.volume34en_US
dc.description.number2en_US
dc.identifier.doi10.1111/cgf.12577en_US
dc.identifier.pages481-491en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record