

Linear Hashtable Method and Predicted Hexagonal Search
Algorithm with Moments Invariant

Yunsong Wu1, Graham Megson1, Zhengang Nie3, Xuan Liu2

1School of Systems Engineering, Reading University, Reading, UK
2Department of Computer Science, Loughborough University, UK

3Beihang University, China

Abstract
this paper presents a novel Linear Hashtable Method Predicted Hexagonal Search (LHMPHS) method for block
base motion compensation on the basis of research from previous algorithm. Hashtable is used in video
compression. Motion vectors produced by Linear Hashtable Motion Estimation Algorithm (LHMEA) are used as
predictors for HEXBS. Moments invariants are also tested in hashtable to prove the more information moments
have, the better it is. Experimental results show that the proposed algorithm can offer the same compression rate
as the Full Search and fastest than all investigated algorithms, while the PSNR is high. LHMPHS has significant
improvement on HEXBS and shows a direction for improving other fast motion estimation algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.4.2 [Image Processing and Computer Vision]:
Compression (Coding)

——————————————————————————————————————

1 Introduction

In this paper, we propose a Linear Hashtable
Motion Estimation Algorithm (LHMEA) to predict
motion vectors for inter-coding. The objective of our
motion estimation scheme is to achieve good quality
video with very low computational complexity. Our
method attempts to predict the motion vectors using
linear algorithm. It uses hashtable method into video
compression. After investigating of most traditional
and on the edge motion estimation methods, I used
latest optimization criterion and prediction search
method. Spatially MBs’ information is used to
generate best motion vectors. I also combine the
LHMEA with Hexagonal Search by motion predictor
method. Hexagonal Search is one of best motion
estimation method currently. The new method
improved by me achieves best results so far. The main
contributions of this paper are (1) it uses hashtable
concept into video compression which uses several
variables to represent whole MB [GF01]. This shows a
direction for future research. (2) Linear Algorithm is
used in video compression. This will improve speed;
also leave space for parallel coding. (3) LHMEA is
combined with hexagonal method. A new LHMEA
predicted hexagonal method is proposed, which make

up for drawback of coarse search of hexagonal

search. (4) Spatially related MB’s information is used
not only in coarse search but also inner fine search.
There are a
large number of motion prediction algorithms. We
only focus on one class of such algorithms, called the
Block Matching Algorithms, which is widely used in
MPEG2, MPEG4, and H.263. By partitioning a
current frame into non-overlapping macroblocks with
equal size, block-matching method attempts to find a
block from a reference frame (past or future frame)
that best matches a predefined block in the current
frame. Matching is performed by moving and
comparing with a criterion, which is called the MAE
mean absolute error/difference in our research. The
MB (macroblock) in the reference frame moves inside
a search window centered on the position of the
current block in the current frame. The best matched
block producing the minimum distortion is found
within the search window in the reference frame.
However, the motion estimation is quite
computationally intensive and can consume up to 80%
of the computational power of the encoder if the full
search is used. It is highly desired to significantly
speed up the process without sacrificing the distortion
seriously. Many computationally efficient variants
were developed, among which are typically Two

Vision, Video and Graphics (2005)
E. Trucco, M. Chantler (Editors)

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

Y. Wu et al /Linear Hashtable Hexagonal Search

©The Eurographics Association 2005.

Level Search (TS), Two Dimensional Logarithmic
Search (DLS) and Subsample Search (SS) [ZE00], the
Three-Step search (TSS), Four-Step Search (4SS)
[LW96], Block-Based Gradient Descent Search
(BBGDS) [LE96], and Diamond Search (DS) [SK00],
[JSM*98] algorithms. A very interesting method
called HEXBS has been proposed by Ce Zhu, Xiao
Lin, and Lap-Pui Chau [CXL02]. There are some
variant HEXBS, such as Enhanced Hexagonal
method[CXL03] and Hexagonal method with Fast
Inner Search[CXL*04].

1.1 Hexagonal Algorithm

Hexagonal method is an improved method based on
DS (Diamond Search). It has shown the significant
improvement over other fast algorithms such as DS. In
contrast with the DS that uses a diamond search
pattern, the HEXBS adopts a hexagonal search pattern
to achieve faster processing due to fewer search points
being evaluated. The motion estimation process
normally comprises two steps. The low-resolution
coarse search to identify a small area where the best
motion vector is expected to lie, and then followed by
fine-resolution inner search to select the best motion
vector in the located small region.

Most fast algorithms focus on speeding up the
coarse search by taking various smart ways to reduce
the number of search points in identifying a small area
for inner search. There are two main directions to
improve the coarse search,

Coarse search improvement

1. usage of predictors [CXL*04], [PLG*04]
2. early termination [PLG*04]

In [CXL*04] a new algorithm was introduced on

Hexagonal search, which is similar as Motion Vector
Field Adaptive Search Technique (MVFAST)
[AOM01] based on DS. The algorithm has
significantly improved the preexisting Hexagonal
Search algorithm both in image quality and speed up
by initially considering a small set of predictors,
namely the (0,0) motion vector and the motion vectors
of the three spatially adjacent blocks(left, top, top-
right) as possible motion vector predictor candidates.
Modified Hexagonal pattern used the best motion
vector predictor candidate as the center of search. In
[[AOM02], [HA02]] it was proposed a prediction set.
In general, we can state that the blocks correlated with
the current one, which are likely to undergo the same
motion, can be divided into three categories as in
Figure.1.

Figure. 1. Blocks correlated with the current one

(1) Spatially correlated blocks (A0, B0, C0, D0),
(2) Neighboring blocks in the previous frame (A1, B1,
C1, D1, E1, F1, G1, H1)
(3) Co-located blocks in the previous two frames (X2
and X3), which provide the Acceleration MV.
Except for coarse search improvement, Inner search
improvement includes:

1. 4 points [CXL*04]
2. 8 points [PLG*04]
3. Inner group search [PLG*04]

2 Linear Hashtable Method Predicted Hexagonal
Search (LHMPHS)

Most of current Hexagonal search algorithms
predictive methods focus on relations between current
frame and previous frames. What we want to do is to
find a fast method which discovers the predictor from
current frame information. It uses spatially related MB
or pixels’ information. It is fast, accurate and
independent on finding right predictors.
So we designed a vector hashtable lookup algorithm
matching algorithm which is a more efficient method
to perform an exhaustive search: it considers every
macroblock in the search window. This block-
matching algorithm calculates each block to set up a
hashtable. It is a dictionary in which keys are mapped
to array positions by a hash function. It is a method of
compressing image data comprising the steps of
generating a set of motion vectors representative of
one or more image frames, generating, by means of a
predetermined hash function a set of hash values
corresponding to said motion vectors, and storing as a
codebook said hash values in the form of a table. We
try to find as few as possible variables to represent the
whole macroblock. The details of setting up hashtable
are as following:

For the purpose of the present description, assume
that the size of the hash table is fixed (i.e. ‘static
hashing’ as opposed to ‘dynamic hashing’ in which
the table size may vary). The address of a data item x
stored within the hash table may be computed by
evaluating the hash function H(x). Typically, hash
tables are partitioned into b ‘buckets’, with each
bucket consisting of s ‘slots’ Each slot is capable of
storing exactly one data item, and in LHMEA that s=2,
i.e. each bucket stores just one data item.

The construction of the hash function H(o) is the
most crucial aspect of designing a hash table. Not only

Hexagonal motion estimation process

low-resolution coarse search fine-resolution inner search

196

Y. Wu et al / Linear Hashtable Hexagonal Search

©The Eurographics Association 2005.

should H(o) be easy to compute, but it should also
ideally generate a unique address within the hashtable
for each argument. It is not possible for the hash table
to hold every possible value of the argument. Hence, it
has been found that collisions often occur. i. e.

H(x)=H(y) for two data items { }yxyx ≠, .

Another problem is that of overflow, whereby a data
item is mapped by H(o) into an existing bucket that is
already full. Ideally, therefore, hash functions should
be designed to minimize the possibility of both
collisions and overflow. It has been found that there
are advantages to encoding groups of image sequences,
as opposed to encoding individual samples. A
technique known as vector quantization (VQ) utilizes
this finding and offers a way of performing lossy
compression along the way.
VQ is essentially the multi-dimensional generalization
of scalar quantization, as is commonly employed in
analog-to-digital conversion processes. In analytical
terms, if X is an N-dimensional source vector, then
VQ is a mapping M such that:

LHM N >−:
where L is an L-dimensional set, L<N, such that

},....,{ 1 NYYL = , and the N
i HL ∈ for i=1,…,L.

L is usually termed the ‘codebook’, and the iY the

‘code vectors’. The VQ operator Q partitions NH

into L disjoint and exhaustive regions { }LPP ,...1 ,
each of which has a single coarse-grained
representation.

From an implementation perspective, encoding
involves a two-stage process:
1. Hashtable generation, in which a decision is made
on the number of entries in the hashtable.
Representative code vectors from the I-frame are
computed (using linear hashtable training algorithms)
and stored in hashtable. Clearly, the larger the
hashtable, the less quantization error during encoding
and look-up. It follows, therefore, that the minimum
bound on the size of hashtable should be at least equal
to the maximum number of motion vectors that any
subsequent predicted frame will require. Thus video
fidelity becomes a function of the size of the hashtable.
2, Hash Table loading, in which the Vector Quantized
Hashing Table(VQHT) bucket slots are filled up by
feeding every possible source vector (macroblock)
from the I-frame through the hash function and storing
it (together with its co-ordinates) in its appropriate
bucket. Bucket slots are filled up sequentially in this
manner. Through some preprocessing steps, “integral
projections” are calculated for each macroblock.
These projections are different according to different
algorithm. The aim of these algorithms is to find best
projection function. For example, in my report, I
represent 2 algorithms. Each has 2 projections, one of
them is the massive projection, which is a scalar
denoting the sum of all pixels in the macroblock. It is
also DC coefficient of macroblock. Another is a of

Y=ax+b (y is luminance, x is the location.) Each of
these projections is mathematically related to the error
metric. Under certain conditions, the value of the
projection indicates whether the candidate macroblock
will do better than the best-so-far match. The major
algorithm we discuss here is linear algorithm.

2.1 Linear Hashtable Motion Estimation Algorithm
(LHMEA)

Linear Algorithm is most beautiful, easy and fast to
calculate on computer because the construction of
computer calculator based on additions. So if most of
calculations of video compression are done on linear
algorithm, we can save lots of time on compression. It
is also very easy to put on parallel machines in the
future, which will benefit real time encoding. In the
program, we try to use polynomial approximation to
get such result y=mx+c; y is luminance value of all
pixels, x is the location of pixel in macroblocks. The
way of scan y is from left to right, from top to button.
Coefficients m and c are what we are looking for.

���

���

===

===

−

−
=

N

i
i

N

i
i

N

i
i

N

i
i

N

i
i

N

i
ii

xxxN

yxyxN
m

000

2

000

**

)(*

���

����

===

====

−

−
=

N

i
i

N

i
i

N

i
i

N

i
ii

N

i
i

N

i
i

N

i
i

xxxN

yxxxy
c

000

2

000

2

0

**

in this way, we initially realized the way to calculate
the hashtable. In previous methods, when we try to
find a block that best matches a predefined block in
the current frame, matching was performed by SAD
(calculating difference between current block and
reference block). In Linear Hashtable Motion
Estimation Algorithm (LHMEA), we only need
compare two coefficients of two blocks. In current
existing methods, the MB moves inside a search
window centered around the position of the current
block in the current frame. In LHMEA, the
coefficients move inside hashtable to find matched
blocks. If coefficients are powerful enough to hold
enough information of MB, motion estimators should
be accurate. So LHMEA increases lots of speed,
accuracy and will make a new era of video encoding.

2.2 Linear Hashtable Method Predicted Hexagonal
Search

After motion estimators are generated by LHMEA,
they will be used as predictors for hexagonal
algorithm for coarsely search. These predictors are

197

Y. Wu et al /Linear Hashtable Hexagonal Search

©The Eurographics Association 2005.

different from all previous predictors. They are based
on full search and current frame only. Because
LHMEA is linear algorithm, it is fast. Because the
predictors generated are accurate, it will improve
Hexagonal method without too much delay in speed.

Figure.2.Original Hexagonal Coarse Search

The original Hexagonal Search moved step by step,
maximum two pixels per step, but in our proposed
method, The LHMEA motion vectors are used to
move hexagon directly to the area where near to the
pixel whose MB distortion is smallest.
This saved lots of computation on low-resolution
coarse search.

Figure.3 Proposed Hexagonal Coarse Search

In the Figure below, we compared Full Search (FS),
Linear Hashtable Motion Estimation Algorithm
(LHMEA), Subsample Search (SS), Two Level Search
(TLS), Logarithmic Search (LS) and three kinds of
Hexagonal Search Algorithms. Three Hexagonal
Search Algorithms are Hexagonal Search(HS), Linear
Hashtable Method Predicted Hexagonal Search
(LHMPHS) and Hexagonal Search With Median
Predictor of Spatially Adjacent Blocks(left, up and
upright blocks what are respectively named A0, B0
and C0 in Figure. 1. (HSM) [AOM01]. All HS
algorithms used 6-side-based fast inner search

[PLG*04] and early termination criteria [AOM01]
mentioned in our paper. All the data here refer to P
frames only. The HS can achieve nearly the same
PSNR as FS and only takes 10% time of FS. The
LHMPHS is better than HS without predictor on
compression rate when time and PSNR are the same.
HSM is the best algorithm. But if we can find better
coefficients in the hashtable to represent MB, the
hashtable will have a wonderful future.

We also tried flower garden data stream. It is under
the same condition as Table Tennis. As in the figure
below, we can see LHMPHS is better than HS, while
worse than HSM on both compression rate and PSNR
of P frames.

COMPARISON OF FS AND HEX
ALGORITHMS

0
5

10
15

20
25
30

5 25 45 65 85

FRAME NUMBER

P
S

N
R

 d
B

Figure. 4. Comparison of PSNR between FS (full
search), HS (hex_hashtable only), LHMPHS
(hex_pred_median), and HSM (hex_hash_median)
(based on 5-100 frames of Flower Garden)

But in the following figure about PSNR from 5 to
100 frames of Table Tennis data stream, all the data
algorithms’ PSNR are the same. It means LHMEA
works better on large motion vector video stream.

COMPARISON OF FS AND HEX
ALGORITHMS

0

10

20

30

40

5 25 45 65 85
FRAME NUMBER

P
S

N
R

 in
 d

B

Figure. 5. Comparison of PSNR between FS(full
search), HS(hex_hashtable only),
HMPHS(hex_pred_median), HSM(hex_hash_median)
(based on 5-100 frames of Table Tennis)

198

Y. Wu et al / Linear Hashtable Hexagonal Search

©The Eurographics Association 2005.

The FS, HS, LHMPHS, HSM are certain center
biased algorithms. This is also basis of several other
algorithms. It was based on the fact that for most
sequences motion vectors were concentrated in a small
area around the center of the search. This can also be
seen in the figures below. Unfortunately for some
sequences this is not always true as can be seen in the
flower garden figure 6.(a), which implies that these
algorithms will have reduced performance in such
cases. From additional simulations we can observe
that predictor seems to have a much higher correlation
with the current motion vector than (0,0) even for non-
center biased sequences such as the Flower Garden
mentioned previously. This suggests that, instead of
initially examining the (0,0) position, we could
achieve better results if the LHMEA predictor is
examined first and given higher priority with the use
of early termination threshold.

 (a)

(b)
Figure.6. Motion vector distribution in (a) flower
garden and (b) table tennis using hexagonal algorithm
with LHMEA predictor.

2.2 Moments Invariants.

Except for the coefficients from the Linear Algorithm,
we put moments invariant into the hashtable as a test.
The set of moments we are considering is invariant to
translation, rotation, and scale change. We consider
moments represent a lot more information than the
coefficients m and c that we proposed in LHMEA. As

we can see from the experimental result, moments
have some improvement on hashtable method.

where
00

10

m
m

x = and
00

01

m
m

y =

The normalized central moments, denoted pqη , are

defined as

00
γµ

µ
η pq

pq = where 1
2

++= qpγ for

p+q=2,3,….

A set of seven invariant moments can be derived from
the second and third moments.

02201 ηηφ +=

2
11

2
02202 4)(ηηηφ +−=

2
0321

2
12303)3()3(ηηηηφ −+−=

2
0321

2
12304)()(ηηηηφ +++=

[]2
0321

2
1230

123012305

)(3)(

*))(3(

ηηηη
ηηηηφ

+−+

+−=

[]2
0321

2
1230

03210321

)()(3

*))(3(

ηηηη
ηηηη
+−+

+−+

[]
))((4

)()()(

0321123011

2
0321

2
123002206

ηηηηη
ηηηηηηφ

+++
+−+−=

[]2
0321

2
1230

123003217

)(3)(

*))(3(

ηηηη
ηηηηφ

+−+

+−=

[]2
0321

2
1230

03213012

)()(3

*))(3(

ηηηη
ηηηη
+−+

+−+

Table I shows experiment result using three different
algorithms: LAHSBTPA without moments;

LAHSBTPA with 2 moments 1φ and 2φ in hashtable;
and LAHSBTPA with 7 moments in hashtable. The
experiments result proves that invariant moments used
in hashtable help increase compression rate and PSNR
on the cost of compression time. It means if we can
find better coefficients in hashtable, the experimental
result can be further improved.

199

Y. Wu et al /Linear Hashtable Hexagonal Search

©The Eurographics Association 2005.

TABLE I
Comparison of compression rate, time and PSNR
among TPA with different number of moments in
hashtable (based on 150 frames of Table Tennis)

Data
Steam

Table
Tennis

Table
Tennis

Table
Tennis

Moment
Test

No
moments

With 2
Moments

With 7
Moments

compress
ion
time(s) 16 32 43
compress
ion rate 94 94 95
average
P frame
PSNR 40.2 40.6 40.6

3 Summary

In the paper we proposed a new algorithm called
Linear Hashtable Motion Estimation Algorithm
(LHMEA) in video compression. It uses linear
algorithm to set up hashtable. The algorithm searches
in hashtable to find motion estimator instead of by FS.
Then the motion estimator it generated will be sent to
Hexagonal algorithm, which is the best motion
estimation algorithm, as predictor. In this way, it is
improved both in quality and speed of motion
estimation. Moments invariants are used to prove the
more information hashtable has, the better it is. The
key point in the method is to find suitable coefficients
to represent whole MB. The more information the
coefficients in hashtable hold about pictures, the better
result LHMPHS will get. This also leaves space for
future development.

References

[AOM01] Alexis M. Tourapis, Oscar C. Au, Ming L.
Liou: Predictive Motion Vector Field Adaptive Search
Technique (PMVFAST) Enhancing Block Based
Motion Estimation. proceedings of Visual
Communications and Image Processing, San Jose, CA,
January (2001)
[AOM02] A. M. Tourapis, O. C. Au and M. L. Liou:
Highly Efficient Predictive Zonal Algorithms for Fast
Block. Matching Motion Estimation. IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 12, No.10, pp 934-947, (October
2002)
[CXL02]. Ce Zhu, Xiao Lin, and Lap-Pui Chau:
Hexagon-Based Search Pattern for Fast Block Motion
Estimation. IEEE Trans on circuits and systems for
video technology, Vol. 12, No. 5, (May 2002)
[CXL03]. C. Zhu, X. Lin and L.P. Chau: An
Enhanced Hexagonal Search Algorithm for Block
Motion Estimation. IEEE International Symposium on

Circuits and Systems, ISCAS2003, Bangkok, Thailand,
(May 2003)
[CXL*04]. Ce Zhu, Xiao Lin, Lappui Chau, and Lai-
Man Po: Enhanced Hexagonal Search for Fast Block
Motion Estimation. IEEE Trans on circuits and
systems for video technology, Vol. 14, No. 10, (Oct
2004)
[GF01] Graham Megson & F.N.Alavi Patent
0111627.6 -- for SALGEN Systems Ltd (2001)
[HA02] H-Y C. Tourapis, A. M. Tourapis: Fast
Motion Estimation within the JVT codec. Joint Video
Team (JVT) of ISO/IEC MPEG and ITU-T VCEG 5th
meeting, Geneva, Switzerland. (09-17 October 2002)
[JSM*98]. J. Y. Tham, S. Ranganath, M. Ranganath,
and A. A. Kassim: A novel unrestricted center-biased
diamond search algorithm for block motion estimation.
IEEE Trans. Circuits and systems for video
technology, vol. 8, pp. 369–377, (Aug. 1998)
[LE96]. L. K. Liu and E. Feig: A block-based
gradient descent search algorithm for block motion
estimation in video coding,” IEEE Trans. Circuits Syst.
Video Technol., vol. 6, pp. 419–423, (Aug. 1996.)
[LW96]. L. M. Po and W. C. Ma: A novel four-step
search algorithm for fast block motion estimation,”
IEEE and systems for video technology, vol. 6, pp.
313–317, (June 1996.)
[PLG*04] Paolo De Pascalis, Luca Pezzoni, Gian
Antonio Mian and Daniele Bagni: Fast Motion
Estimation With Size-Based Predictors Selection
Hexagon Search In H.264/AVC encoding. EUSIPCO
(2004)
[RA02] Rafael C. Gonzalez: Digital Image Processing
second edition. Prentice Hall (2002)
[SK00]. S. Zhu and K.-K. Ma: A new diamond search
algorithm for fast blockmatching motion estimation.
IEEE Trans. Image Processing, vol. 9, pp. 287–290,
(Feb. 2000.)
[ZE00]. Ze-Nian li Lecture Note of Computer Vision
on personal website (2000)

200

Y. Wu et al / Linear Hashtable Hexagonal Search

©The Eurographics Association 2005.

Appendix:

 EXHAU
STIVE

SUBSA
MPLE

TWOLE
VEL

LOGARI
THMIC

Vector
Hashtable

Hex
No
Predictor

Pred_Has
htable

Pred_Me
dian

 Inner
Group

Inner
Group

Inner
Group

 Hex_near Hex_near Hex_near
Compressi
on Time(s) 11 4 3 1 3 1 1 1

(fps) 2.3726 6.4286 7.3171 24.7706 8.4112 19.4245 14.2857 17.5325
Compressi
on Rate 48 48 48 42 24 37 39 42

PSNR 21.3 21.3 21.3 21.8 24.9 21.2 21.2 21.2

201

