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Abstract

We propose a new, effective system for Content-Based trademark retrieval, which involves Size Functions. Three
different classes of shape descriptors are combined, for a total amount of 25 measuring functions. The evaluation
has been performed on a database of 1182 trademark images, provided by the UK Patent Office.

1. Introduction

Dealing with trademarks is a challenging task for Content—
Based Image Retrieval systems. First of all, there is an ac-
tual user need: since the number of registered trademarks
in the world is enormous and rapidly growing, a perform-
ing system for automatic retrieval would save a lot of time
when trying to avoid copyright infringement. But the chal-
lenge also comes out from images themselves: trademarks
may contain one or multiple components, representing real
objects as well as consisting of purely geometric or abstract
shapes.

In this paper we propose a new approach to trademark re-
trieval, based on Size Functions, which are geometrical-
topological descriptors, conceived for formalizing qualita-
tive aspects of shapes. Size Functions seem to be particularly
apt to this setting, since they have proven to be particularly
useful for dealing with objects where no standard templates
are available [VUFF93]. Moreover, their modularity allows
us to incorporate in a unique framework different kinds of
shape descriptions, through the choice of different measur-
ing functions (see Section 3.2).

The rest of the paper is organized as follows. Section 2 pro-
vides a brief survey of existing works on this field. Section
3 describes our approach to trademark representation and
matching. In section 4 we present the results obtained with
our retrieval system on a database of about 1200 images, pro-
vided by the UK Patent Office. Some discussions in Section
5 will conclude the paper.
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2. Literaturereview

Several research groups have been involved in facing the
challenge coming out from automatic trademark retrieval.
Kato’s TRADEMARK system [Kat92] uses graphical fea-
ture vectors, including spatial distribution, spatial frequency,
local correlation and local contrast, computed from nor-
malized trademark images. Wu et al. STAR (System for
Trademark Archival and Retrieval) system [WLM*96] in-
volves Fourier descriptors and moment invariants extracted
from manually segmented shapes. Principles deriving from
Gestalt psycology are on the basis of ARTISAN project. The
first prototype system [EGBS96] uses a combination of sim-
ple global features computed both from single image compo-
nents and from families of grouped components; further ver-
sions [EREO3] show improvements in the grouping phase,
the use of multiresolution analysis to cope with texture and
noise, and the introduction of a variety of shape measures.
Similar principles to ARTISAN give foundation to Alwis’
work [AA99], which uses perceptual relationships between
local features (such as co-linearism, co-curvilinearism, par-
allelism and end-point proximity) as well as features com-
puted on closed contours of the images. In Ciocca and
Schettini’s system [SC99] moment invariants, edge direc-
tions and wavelet coefficients are used, while Kim and Kims
[KKKK99] choose the magnitudes of Zernike moments as a
feature set. Ravela and Manmatha [RM99] propose the use
of two geometric features, the shape index and the local ori-
entation of the gradient, computed from Gaussian derivatives
of image intensity.
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3. System description

Let us first recall the definition of Size Functions (SF’s).
The definition given below is slightly different from the one
present in the literature [FL99]; differences arise only in
pathological cases, of no interest in this research. We will
then describe the set of measuring functions and the similar-
ity score introduced to the scope of trademark retrieval.

3.1. SizeFunctions

Consider a continuous real-valued function ¢ : M — R,
called measuring function, defined on a subset M of an
Euclidean space (often, it will be implicitely defined as the
restriction of a function defined on the whole Euclidean
space). The (reduced) Size Function of the pair (M, ) is a
function £ nq ) : {(x.y) € R*[x <y} —N.

For each pair (x,y) € R?, consider the set My = {P € M
| §(P) < x}. Two points in My are then considered to be
equivalent if they belong to the same connected component
of My. The value £ 4 ¢)(X,Y) is defined to be the number
of the equivalence classes obtained by quotienting Myx with
respect to the previous equivalence relation in My.

A discrete version of the theory exists, which substitutes the
subset of the plane with a graph G = (V,E), the function
¢ : M — R with a function ¢/ :V — R, and the concept
of connectedness with the usual connectedness notion for
graphs.

Figure 1 shows a simple example of SF. In this case the
topological space M is a curve, while the measuring
function ¢ is the distance from point C.
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Figure 1: Left: A pair (M, ), where M is the curve depicted by
a solid line, and ¢ is the distance from point C. Right: The corre-
sponding reduced size function.

As can be seen in Figure 1, SF’s have a tipical structure:
They are linear combination (with natural numbers as co-
efficients) of characteristic functions of triangular regions.
That implies that each SF can be described by a formal linear
combination of cornerpoints and cornerlines. Each distance
between formal series naturally produces a distance between
SF’s. A detailed treatment of this subject can be found in

[FLO1]. Of the many available distances between formal se-
ries (see, e.g., [DFL99]), the one we use in this paper is the
Hausdorff distance.

It is important to remark that SF’s are easily and fast com-
putable; see [d’AmO0Q] for details.

3.2. Measuring functions

Three different and unrelated sets of measuring functions
were implemented in our system.

The first set consists of sixteen distances from points. Let
us fix a Cartesian reference frame (O,ejp,ez) in the plane.
From now on, points will be identified with their coordinate
pairs. Let p = (px, py) € R2. We define the measuring func-
tion dp : R — R as ¢p(x,y) = d(p, (x,y)) with d the Eu-
clidean distance. Every imput binary image is normalized
(but without resolution loss) and translated so that its center
of mass is taken to the origin of the reference frame. There-
fore each measuring function ¢p is invariant by scale change
and translation; as a consequence, the corresponding SF’s
turn out to be invariant by the same transformation group.
Here is the formal definition of the first set of measuring
functions used in this research:

® = {¢p|p= %(cos(aﬂg),sin(aﬂg))
i=1,...,4}U
{¢plp= T(COS(aHg),sin(aJr ig))
i=0,...,7}U

3 _.m ., .Tt
{¢pp|p= ET(COS(GJF'Z)’S'n(GJF'Z))

i=0,...,7},

where the constants T and O take value respectively 0.8
(all images are scaled with respect to average radius) and
0.349 (approximately corresponding to a 20 degrees phase-
displacement).

The second set contains five measuring functions, each hav-
ing a segment as domain. One of the five is a ‘projection’ of
the image on the horizontal base segment: the whole image
is fibered into a set of vertical pixel segments; for each of
these, the number of black pixels contained in it is counted.
The corresponding pixel of the horizontal base segment re-
ceives this number. The final measuring function is obtained
by convolving these values, normalized dividing by the total
number of black pixels, with a narrow Gaussian. The other
four measuring functions are its variations built by project-
ing along the horizontal direction and along the three at 11/8,
/4, 311/8.

The third set consists of four functions. One counts ‘jumps’
along the vertical direction. Again, the whole image is
fibered into a set of vertical pixel segments; for each of these,
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a counter is incremented each time two consecutive pixels of
the vertical segment are of opposite colour. The correspond-
ing pixel of the horizontal base segment receives this num-
ber of black-to-white and white-to-black jumps. Again, nor-
malization (dividing by the maximum number of jumps) and
convolution with a narrow Gaussian yields the final measur-
ing function. In this case, the other three measuring functions
are its variations built by counting jumps along the horizon-
tal direction and along the two at 45 degrees.

3.3. Similarity assessment

Retrieval was performed combining in a single similarity
score the Hausdorff distances coming out of the different
SF’s of the set. Since those distances do not share the same
distribution, a normalization is called for; thus distances are
normalized so that they have zero mean and unit variance.
The final similarity score consists of an average of those nor-
malized values, thus summarizing the contributions of the
three descriptors.

4. Experimental results
4.1. Retrieval

In order to assess the ability of our system in retrieving sim-
ilar trademarks, we decided to test it on a database of 1182
trademark binary images, coming from the UK Patent Of-
fice. 10 queries were submitted, for which we had similarity
judgements provided by trademark officers.
The similarity score between two trademark images was
given by the combination of the distances between the cor-
responding Size Functions, as described above in Section
3.3. The queries were then refined, adding some feedback
capabilities: in order to give a different prominence to dif-
ferent measuring functions, according to their retrieval per-
formance, for each of the three descriptors we computed a
weight given by
1

SiRi’
where R; denotes the position of the i-th relevant image,
among retrievals provided by that decriptor; images not oc-
curring among the top 10% were assigned the maximum
rank, i.e. the dimension of the database. Those weights were
then used to re-order the lists of retrievals.
Notice that no preprocessing was performed on the images
to remove holes or spots; this was done in order to test the
resistance to noise of our system.

4.2. Performance evaluation

As stressed in several papers (e.g. [HS05], [LSLZ01],
[MMSMO1]), evaluation is a very critical issue for IR Sys-
tems. Apart from the problem of possessing a reliable and
objective ground truth, all most common parameters have
some drawbacks. A particular fault of several evaluation
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methods is that they don’t take sufficiently well into account
the position of the retrieved relevant objects within the scope
(i.e. within the whole retrieved set). In what follows, we try
to overcome this problem in two ways. First, we adopt the
normalized average rank Rank introduced by [MMSMO01]:

1 N Ri — Nrel (Nrel + 1)
NNrg i; ' 2 ’

where R; is again the rank at with the i-th relevant image
is retrieved, N is the dataset size, and N,g is the number of
relevant images for a given query. It is 0 for perfect perfor-
mance and approaches 1 as performance worsens.
Second, we have also computed P(k) and R(k), respectively
precision and recall, on the first k retrieved images, with
k = Nra, 2Nrg, 3N, SO adapting the scope to the (vary-
ing) number of relevant objects, rather in the line of normal-
izations supported by [HS05]. The precision and recall de-
scriptors attempt to measure the effectiveness of the retrieval
method measuring the ability of the system to retrieve rele-
vant objects while discarding non relevant ones. Explicitly,
NR(k) NR(k)
Pl==1" RIp=" =,
where NR(k) is the number of relevant items among the first
k retrieved.

Rank =

WLC SLC SMF
Rank | 0.080017 | 0.11908 | 0.180849
P(Nrg) | 0.621055 | 0.563939 | 0.399887
P(2N,g) | 0.354907 | 0.310772 | 0.231875
P(3N;q) | 0.249425 | 0.218207 | 0.165282
R(2Nyg) | 0.709814 | 0.621544 | 0.463751
R(3Nyg) | 0.748275 | 0.654621 | 0.495845

Table 1: Evaluation of results. WLC: Weighted Linear Combina-
tion. SLC: Simple Linear Combination. SMF: Single class of Mea-
suring Functions. Of course, R(Nrg ) = P(Nrg ).

Table 1 gathers the average results for the weighted linear

combination, for the simple linear combination, and for a
single class of measuring functions. The number of relevant
items N for each queried trademark goes from a minimum
of 4 to a maximum of 26. The reader should keep in mind
that good ranks have low values, while good precision and
recall have high scores. As can be seen, the evaluation pa-
rameters greatly improves from the combination of the three
descriptors, with respect to the use of a single one.
The precision-recall graph of Figure 2 refers to the com-
bined and the weighted similarity score. Figure 3 depicts
the GRIP graph, plotting the value of precision=recall versus
—logz(g), where the generality g is the ratio of the number
of relevant items for each query (4 to 26) by the total size of
the database (1182) [HS05].
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Figure 2: Precision-recall graphs for the combined scores, before
and after feedback.
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Figure 3: GRiP graphs for the combined scores, before and after
feedback.

5. Discussions
5.1. Commentson theresults

Figures 4, 5, 6 shows some retrieval exemples. For each
query, the first 8 results are depicted; the query has always
been retrieved as the first one, as a confirm of the robustness
of the system.

As can be seen (e.g. in Figure 4), our system has proven to
be resistent to noise: Noisy or different in size instances of
the same trademark are always retrieved within the first posi-
tions, altough sometimes they show lowest rank with respect
to other relevant images.

Figure 5 shows the persistence of the same shapes, i. e. tri-
angles and circles, in the first retrieved objects, apart from
the clear false positive in 8th position; the square inside the
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Figure 4: A query example and the first eight retrievals.
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Figure5: A query example and the first eight retrievals.

circle has not been judged relevant by the UK trademark of-
ficers, and probably is not, but, at a first glance, it may be
perceived as similar.

Figure 6 shows that images consisting of two instances of
the same shape may be perceived as similar to other im-
ages sharing the same structure (mainly projections measur-
ing functions ‘see’ that kind of structure, while, e. g., jumps
measuring functions tends to perceive two instances of the
same object as a single one, due to the choosen normaliza-
tion); this can be an advantage (see the 4th or the 5th ranked
object), but also a drawback (as for the 6th or the last one of
the list).

Browsing the actual outputs of the queries for each measur-
ing function is very interesting. A single descriptor is not
very effective by itself, due to the presence of many false
positives among the first retrieved objects; what is interest-
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Figure 6: A query example and the first eight retrievals.

ing is that the classification of relevant items is quite differ-
ent for each class of measuring functions, as they were look-
ing at trademarks from different points of view: This ensures
that the combination of results gives a reliable improvement
to the ordering of retrievals. Figure 7 shows the different or-
derings of relevant objects in response to the same query, ob-
tained by the three different classes of measuring functions;
notice, e. g., that ‘jumps’ actually perceive as similar the im-
age in which the contour of the object is thicker (the one with
rank 10), since the number of jumps does not change, while
‘projection’ is clearly mistaken by the same image.

5.2. Conclusions

We have presented a new system for Content—Based trade-
mark retrieval, based on the use of Size Functions as shape
descriptors.

Three classes of measuring functions, namely distances, pro-
jections and jumps, have been involved, showing resistance
to noise and a promising effectiveness in retrieval on a
database of 1182 trademark images.

We are currently investigating the possibility of introducing
new measuring functions, in order to have a more complete
description of shapes.
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Figure 7: A query and its relevant images. The first three columns
are related to the three different classes of measuring functions, re-
spectively jumps, projections and distances; the last column shows
the final ordering after the weighted averaging. For each column,
the results are arranged according to their similarity score with re-
spect to the query model, from top to bottom; the numbers represent
the rank at which the corresponding images have been retrieved.
The normalized weights computed here were 0.483 for jumps, 0.103
for projections and 0.414 for distances.
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