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Abstract

Image-based modeling of semi-transparent, dynamic phenomena is a challenging task. We present an optical to-
mography method that uses an adaptive grid for the reconstruction of a three-dimensional density function from
its projections. The proposed method is applied to reconstruct thin smoke and flames volumetrically from synchro-
nized multi-video recordings. Our adaptive reconstruction algorithm computes a time-varying volumetric model,
that enables the photorealistical rendering of the recorded phenomena from arbitrary viewpoints. In contrast to
previous approaches we sample the underlying unknown, three-dimensional density function adaptively which
enables us to achieve a higher effective resolution of the reconstructed models.

Categories and Subject Descriptors (according to ACM CCS):
I.4.5 [Image Processing and Computer Vision]: ReconstructionI.4.8 [Image Processing and Computer Vision]:
Scene AnalysisShapeI.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Certain dynamic phenomena in nature are challenging to
model realistically [FSJ01, NFJ02, ZWF∗03]. We propose
to use real images of such phenomena to obtain com-
puter models that are suitable for photorealistic image
synthesis. In [IM04] optical tomography is introduced as
a suitable method to reconstruct volumetric phenomena
from camera images. The method is applied to reconstruct
three-dimensional volumetric models of flames. This arti-
cle presents an advancement of this scheme that is more
memory-efficient which allows increasing the accuracy of
the reconstruction. Besides flames, we reconstruct another
class of volumetric phenomena, i.e. thin smoke.

Image-based modeling of transparent phenomena has re-
ceived only little attention in computer vision. There have
been approaches to extend surface reconstruction by taking
transparency into account [BV99, SG98]. Computerized to-
mographic methods have been applied to rigid body recon-
structions [GW99]. Transparent, volumetric phenomena are
treated by Hasinoff et al. [HK03, Has02]. While the similar-
ity of the reconstruction problem to computerized tomogra-
phy (CT) is pointed out, the CT method is deemed not ap-
plicable in the sparse view case. In Ref. [HK03] the flame
sheet decomposition algorithm is developed, which recon-

Figure 1: The adaptive reconstruction process to the left,
reconstruction result to the right.

structs a surface (the flame sheet) with varying transparency
and color. Ihrke and Magnor [IM04] use 3D - CT reconstruc-
tion to generate time-varying volumetric models of flames.

In contrast, this paper presents an adaptive grid comput-
erized tomography technique that has the advantage of re-
quiring less memory and allowing for higher resolution re-
constructions. It uses an octree data structure [Sam90] to
manage the inhomogenous set of basis functions. The clos-
est work to this are multigrid CT reconstruction [LMM93,
HLMR96] and wavelet-based multi-resolution tomogra-
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phy [BKW96,RFLBW97,SY93]. The latter works use multi-
resolution techniques to restrict the number of X-ray expo-
sures [RFLBW97], to supress noise in smooth regions of
the reconstructed image [SY93] and to establish an error
bound on the reconstructed image [BKW96]. In the CT liter-
ature the term adaptive computerized tomography is applied
to methods that perform the data acquisition process adap-
tively e.g. [HFO04]. Octree-based adaptive methods have
also been successfully used in fluid dynamic simulations to
increase the effective resolution of the simulation [LGF04].

The paper is organized as follows: Section 2 reviews the
uniform grid algorithm and its underlying assumptions. A
discussion of the applicability to the reconstruction of smoke
follows. In Section 3 we derive the adaptive algorithm. Sec-
tion 4 presents experiments and results. In Section 5 we con-
clude the paper and present directions for future work.

2. Review of the basic Algorithm

In this section we review the CT algorithm presented in
[IM04]. In this paper a basic computerized tomography (CT)
technique is described, that is based on an algebraic formu-
lation of the inversion of a simplified image formation model
for fire. We discuss its applicability to smoke in Section 2.4.

2.1. Image Formation Model

Hasinoff et. al. [HK03] present a simplified image formation
model for fire. The fire is modeled as a 3D density field φ of
fire reaction products i.e. soot particles. Image intensity is
related to the density of luminous particles in the fire. The
model has the form

Ip =
Z

c
φ ds+ Ibg. (1)

Here Ip is pixel p’s intensity, c a curve through 3D space,
φ is the density field of soot particles and Ibg is the back-
ground intensity. Curve c is the backprojected ray of pixel p.
We approximate every pixel by one ray through the density
field. The underlying assumptions of this simplified model
are

• Negligible absorption/scattering - this assumption is valid
for fire not substantially obscured by smoke, and

• Proportional self-emission - the brightness depends on the
density of the soot particles only

2.2. Mathematical Derivation

In order to invert (1) we have to make an assumption on
the structure of φ. We do this by assuming that φ can be
represented as a linear combination of basis functions φi:

Ip =
Z

c

(
∑

i
aiφi

)
ds+ Ibg (2)

The sum and the coefficients ai can be moved out of the
integral and we get

Ip = ∑
i

ai

(Z
c

φi ds

)
+ Ibg. (3)

Eq. (3) describes a linear system of equations,

p = Sa+b (4)

The rows represent the equations for one pixel and the
columns contain the integrals of the pixel’s backprojected
rays over the basis function φi. The choice of the basis func-
tions φi is essential for the tractability of the problem. The
box basis function

φBox
i (x,y,z) =




xi
min < x ≤ xi

max

1 yi
min < y ≤ yi

max

zi
min < z ≤ zi

max
0 else

(5)

is a popular choice because of its simplicity. This is es-
pecially true in an adaptive setting. Furthermore it is non-
negative which ensures a non-negative density field if a non-
negative solution to Eq. (4) is found. This is necessary to
ensure a physically plausible reconstruction.

2.3. Implementation Issues

The system of equations (4) is generated in a similar way to
volume raytracing [Max95]. We generate the complete sys-
tem of equations, that means we incorporate one equation
for every pixel in all camera images that contains all basis
functions.

For a particular frame of a multi-video sequence we re-
move columns of the matrix in Eq. (4) corresponding to ba-
sis functions with non-zero support completely outside the
visual hull [Lau94]. This effectively sets their coefficients to
zero and makes the sparse view reconstruction process pos-
sible. This process is described in detail in section 3.4. The
resulting smaller linear system is solved in a least squares
fashion:

a = (ST S)−1ST (p−b) (6)

The inversion is carried out using the CGLS variant
[Han98] of the conjugate gradient method. To obtain a
non-negative solution a projection to the subspace of non-
negative solutions is carried out in every iteration. This is
done by setting all negative entries of the solution vector a
to zero.
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2.4. Application to Smoke

To apply the presented method to smoke we have to make
sure the image formation model is more or less valid. Both
assumptions stated in section 2.1 are obviously not true for
smoke in general. We tackle the problem by making the fol-
lowing assumptions

• The smoke is uniformly and diffusely lit, and
• Scattering takes place in a uniform manner .

These assumptions make it possible to treat the smoke as a
self-emissive medium. We found this model to be applicable
for thin smoke reconstruction.

(a) Original (b) Backgound (c) Foreground

Figure 2: Background subtraction for thin smoke: The orig-
inal image (a) contains a burning incense that produces thin
smoke. It is diffusely lit with daylight. (b) is a background
image recorded beforehand and (c) is the background sub-
tracted image that contains only the smoke column.

In the case of flame reconstruction it is possible to
record in a dark setting, avoiding the complication of back-
ground subtraction for transparent phenomena, i.e. vector b
of Eq. (4) is zero. Since the smoke has to be lit uniformly
we have to perform background subtraction which involves
some image processing. We record a sequence of back-
ground images and compute the median background image
as well as the standard deviation for every pixel. This al-
lows us to classify pixels into foreground and background in
the smoke sequences. For pixels classified as foreground we
subtract the backgound value which corresponds to the ad-
ditive nature of the image formation model. All other pixels
are set to zero. This step computes the difference (p−b) in
advance and is depicted in Fig. 2. In the following we regard
vector p as the background-subtracted pixel vector.

In [IM04] it is argued that image processing might be po-
tentially dangerous for the reconstruction process because it
corresponds to an image filter in the 3D domain

p̂ = S(ST S)−1ST p (7)

and the preprocessing of the images might not corre-
spond to a valid filter of this form. This follows from
Eqs. (4) and (6). Fortunately, background subtraction and

noise reduction are not observed to have adverse effects on
the visual quality of the reconstruction.

3. Adaptive reconstruction

3.1. Motivation

An adaptive reconstruction technique for three-dimensional
computerized tomography is motivated by

• better memory efficiency, and
• better regularization properties .

Both improvements are achieved by using less basis func-
tions than in the uniform subdivision case. Using a uni-
form grid, the memory limit of 2 GB on a 32-bit machine
is reached relatively fast. In our experiments we have found
that using 8 cameras with images taken at 320x240 pixel res-
olution, we can achieve a reconstruction resolution of 1283

voxels.

In general we have np rows with O( 3
√

nb) non-zero el-
ements each in matrix S, where nb is the number of basis
functions needed to approximate the density field and np the
number of pixels in a frame ( a frame is one time frame
of a multi-video sequence and contains nc images, where
nc is the number of cameras ). A uniform discretization of
the reconstruction space is assumed. We use an index-stored
sparse matrix as a representation for S. We store the two
indices and the matrix value for each non-zero entry. Even
though this is the most memory efficient storage scheme for
an unstructured sparse matrix, the available memory fills up
quite fast when using a uniform grid.

Better regularization is achieved by representing large re-
gions with a uniform density by only a few basis functions.
This reduces the number of degrees of freedom in that re-
gion.

3.2. Basic Iteration

An adaptive reconstruction algorithm has to proceed itera-
tively.

1. Estimate the coefficients a of Eq. (4), then
2. Project the residual error, i.e. image plane error onto the

basis functions to get a measure where to split, followed
by

3. Splitting of the k basis functions that are responsible for
the largest error. This is implemented as an augmentation
of matrix S.

4. If the estimate is not good enough we go back to step 1.

The following subsections cover the single steps in detail.
The estimation process ( step 1 ) has already been described
in Section 2.2. It is independent of the shape of the basis
functions and therefore directly applicable to the adaptive
algorithm.
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3.3. Error Projection

The main difficulty in the adaptive estimation process is to
relate the residual error

r = p−Sa (8)

to the interpolation error

|u−Pφi u| (9)

Here u is the perfectly reconstructed function and Pφi u
its projection onto the subspace of functions representable
by the basis functions φi. A relation between the two errors
allows for the identification of the coefficients ai that con-
tribute most to the residual error. We present a heuristic for
this projection step and show the feasability of an adaptive
computerized tomography reconstruction.

The basic idea of our heuristic is based on the projection
of the basis function’s regions of support into the camera
images, and on the accumulation of the residual error of the
affected pixels. This yields an intuitive way of relating the
error caused by a particular basis function to the residual
error in the image plane. This error measure is efficiently
implemented using sparse matrix - vector multiplications.

Our main observation is that the complete geometry of
the problem is encoded in the matrix S. The system of equa-
tions (4) has the following structure:




p1
p2
...
pnp


=




R
c1

φ1ds . . .
R

c1
φnb dsR

c2
φ1ds . . .

R
c2

φnb ds
...

...
...R

cnp
φ1ds . . .

R
cnp

φnb ds


a (10)

np is the number of pixels and nb denotes the number of
basis functions used to represent the solution. Since the basis
functions φi have local support the matrix S is sparsely pop-
ulated. Note that every column of the matrix corresponds to
a particular basis function. The rows are the equations for
one particular pixel. Therefore an entry Sij is non-zero only
if the support of basis function φ j projects onto pixel pi. We
use this observation to formulate the projection of the basis
functions into the images and the accumulation of residual
errors per basis function in matrix notation.

eφ j =
1

nφ j
∑

i

[
(Sij �= 0)?1 : 0

]|ri| (11)

The basis function φ j is visible in nφ j cameras, and vec-
tor e contains the error measure for all basis functions. This

computation requires either a specialized function in the im-
plementation of the algorithm or a second copy of matrix S
with all non-zero entries set to one. The specialized func-
tion approach might not be possible if the linear algebra
package is closed source as, for example, MATLAB is. The
copied matrix approach, on the other hand requires twice the
amount of main memory. Therefore it is advisable, to find a
better measure that does not require matrix S to be changed.
By using the coefficients of matrix S directly we can incor-
porate a weight corresponding to the pathlength of the back-
projected ray ci that is affected by basis function φ j. This in
itself is not sufficient to capture the influence of basis func-
tion φ j on the error in pixel pi, because the coefficient aj
might scale basis function φ j in an arbitrary way. A better
version is therefore

eφ j =
aj

nφ j
∑

i
Sij|ri|. (12)

3.4. Splitting and Basis Function Independent Visual
Hull Restriction

Using the error heuristic from the previous section, we it-
eratively split those k basis functions that cause the largest
residual error. k is an arbitrary number that influences the
convergence of the adaptive scheme. We perform a uniform
splitting on the box basis functions. For different types of
basis functions the splitting process becomes more compli-
cated. E.g. for the linear basis function, asymmetric basis
functions have to be introduced where basis functions of dif-
ferent splitting level overlap.

To incorporate the splitting into matrix S it does not have
to be recomputed completely. Rather the columns corre-
sponding to the split basis functions are removed and re-
placed by columns corresponding to the new basis functions.
This, together with the error heuristic expressed in matrix
form results in an efficient implementation of the iterative
method described in Section 3.2.

The visual hull restriction of matrix S can be performed
in an efficient and accurate way. The idea is shown in Fig. 3.
In step 1 we extract all rows that have non-zero entries in
pixel vector p. These represent the rays that are inside the
silhouette of camera c. In step 2 we identify the columns
that have zero entries only, i.e. the basis functions that do
not affect the silhoutte in camera c. Therefore they cannot
be part of the visual hull. This step has to be performed per
camera. Therefore it is necessary to keep track where the
pixels in vector p originated. We compute a binary vector
for each camera, marking all basis functions that are poten-
tially contained in the visual hull. These correspond to non-
zero columns in the submatrices extracted in step 1. The ba-
sis functions marked with one have non-zero support in the
generalized cone backprojected from the silhouette of cam-
era c.

By taking the elementwise logical AND of all binary vec-
tors, we compute the intersection of the generalized cones
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Figure 3: Visual hull restriction of matrix S.

of all cameras and thus the visual hull. This computation
is accurate up to the discretization in the image plane, i.e.
up to the pixel level. Step 4 restricts the original matrix S
to columns corresponding to basis functions that have non-
zero support in the visual hull. The resulting linear system
has zero rows for some of the pixels in vector p that are out-
side the silhouette. Note that not all rows that have a zero
right hand side get removed. This is because the basis func-
tions might not be completely contained in the visual hull.
Therefore the zero pixels have to be accurately included in
the estimation process. Basis functions on the boundary of
the visual hull are very likely to be split, so the boundary of
the visual hull gets represented accurately after some itera-
tions of the adaptive scheme.

The splitting process cannot be performed infinitely. It is
advisable to set a maximum split level. A suitable criterion is
the Nyquist limit, i.e. if a basis function projects to less than
two pixels in all images the splitting can be stopped. A useful
number for k is the square root of the number of basis func-
tions currently used. This choice results in a sub-exponential
growth in the number of basis functions but converges faster
than a constant number k.

3.5. Implementation

The whole adaptive process can be efficiently implemented
using basic matrix - vector operations. A simple indexed,
unordered sparse matrix representation has been found to be
suitable for the purposes of this algorithm. This allows for
a straight-forward implementation and is also easily paral-
lelizable. The memory requirements are typically only 20 to
25% of the uniform grid case while achieving comparable
reconstruction accuracy. This allows for higher resolution
input images and a higher resolution of the reconstructed
model.

We use a minimalistic octree data structure to keep track
of the splitting process. For each column index of matrix S
we store the split level from the root of the tree and the in-
dex that the corresponding leaf would have in a uniformly
split octree under a fixed order of traversal. This enables us
to identify the positions and sizes of the newly inserted ba-
sis functions and to generate the integral values for the new
columns of matrix S in every iteration.

Figure 4: A visual hull restricted adaptive grid (intermedi-
ate step in the iteration).

4. Results

For our experiments we use a calibrated multi-camera setup
with 8 cameras. We record multi-video sequences at a reso-
lution of 320x240 pixels with 15 frames per second. In the
case of smoke we perform the background subtraction as a
preprocessing step. Because the background subtraction is
not perfect, we use an alpha-matte in step 1 of the visual
hull restriction process Fig. 3. The matte is created using
morphological operators on the thresholded foreground im-
ages. The fire sequences are recorded in the dark and do not
need to be preprocessed. We performed a convergence study
of the adaptive algorithm. The results are shown in Fig. 5.
The residual error decreases as expected with the number of
iterations. The decrease is not monotonic though. This is be-
cause our error measure is based on a heuristic. An interest-
ing graph is the plot of the number of rows in matrix S ver-
sus the number of iterations. It shows that the basis functions
adapt to the pixel perfect visual hull. A visualization of the
results after different numbers of iteration and the conver-
gence of the solution is shown in Fig. 7. Along with Figs. 8
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Figure 5: Behaviour of nb the number of visual hull consis-
tent basis functions (columns) in matrix S (top), np the num-
ber of pixels (rows) in matrix S (middle) and the residual
error (bottom) versus the number of iterations of the adap-
tive algorithm.

and 6 it shows reconstructions we have obtained by applying
our algorithm to different multi-video sequences.

5. Conclusions and Future Work

We have presented an adaptive algorithm for optical tomog-
raphy. The algorithm is based on an octree hierarchy of
piecewise constant basis functions. We propose a heuristic
that enables the projection of errors in the image plane into
the domain of the basis functions. This allows us to itera-
tively split basis functions that cause large residual errors in
the image plane. Using this algorithm we are able to recon-
struct dynamic, volumetric models of flames and thin smoke.
Additionally we presented an efficient scheme for the accu-
rate computation of the visual hull. This scheme is indepen-
dent of the choice of basis functions and accurate up to the
pixel level.

We believe that our adaptive tomography algorithm is ap-
plicable to other tomography problems as well. We would
like to test it on real X-ray data to measure its performance

compared to more traditional methods like filtered back-
projection. Future work includes the derivation of a math-
ematically sound error projection as well as the use of dif-
ferent classes of basis functions. Wavelet bases provide an
interesting option but it is more difficult to ensure a non-
negative density field because the basis functions are not
non-negative. This research would also provide a connec-
tion to wavelet-based multi-resolution schemes [BKW96,
RFLBW97, SY93].

Further experiments regarding the combination of fire and
smoke in recorded sequences should be conducted. Model-
ing occluding objects in flames and smoke is another possi-
bility.
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Figure 6: A volumetric model of smoke rendered from different viewpoints.

Figure 7: Visualization of reconstruction results after 1, 2, 14, 28 and 100 iterations.

Figure 8: Reconstructions of 15 consecutive frames of a smoke sequence.
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