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Abstract
The paper tackles the problem of feature points matching between pair of images of the same scene. This is a
key problem in computer vision. Among the many possible applications of feature matching we are motivated
for helping in the initialisation of a 3D registration procedure. The method we discuss here is a version of the
SVD matching proposed by Pilu, modified in order to cope with large scale variations. We detail the algorithm
and present experimental evidence of the improvement in performance. The main contribution of this work is in
showing that this compact and easy algorithm can be used for large-baseline matching.

1. Introduction

Finding correspondences between feature points is one of
the keystones of computer vision, with application to a va-
riety of problems. Automatic feature matching is often an
initialisation procedure for more complex tasks, such as fun-
damental matrix estimation, image mosaicing, object recog-
nition, and three-dimensional point clouds registration.

The last of the tasks mentioned above is the one that mo-
tivated our work, and is probably the less known. A 3D data
acquisition system returns measures of the same object com-
ing from different poses, therefore the various 3D scanning
need to be registered. Even if methods for 3D data registra-
tion do exist [BM92], they do need a good initialisation, that
might be provided by point matched in the images, provid-
ing that an appropriate calibration between an image and a
3D point cloud is given. We aim at obtaining a system to
compute sparse correspondences between image pairs and
use them to initialise a 3D registration procedure. From the
feature matching standpoint our goal is to devise a procedure
that allows us to obtain a reasonably high number of accu-
rate matches from image pairs acquired by a large baseline
system.

As mentioned before, point matching is a corner-stone for
a large class of computer vision algorithms, and for this rea-
son has been tackled since the old days of computer vision
research [vdBR77,RvdB77]. For this reason we focused our
presentation on general images, and not on images related to
our 3D scanning problem. The problem of matching points
between images is covered by a very rich literature. We do
consider here the case when the epipolar geometry is not

known, and then the corresponding point can be anywhere in
the image. A classical approach, for the case of short base-
line, is the one presented in [DZLF94], that adopts a standard
correlation step, followed by a relaxation step. Correlation
between grey-level values is also used in [Pil97]. The per-
formance of all these algorithms are usually poor in the case
of large scene differences.

In this paper we discuss a modification of the algorithm
proposed in [Pil97], that uses meaningful local descriptors
to deal with a larger baseline and scale changes. We claim
that the not great performance of the algorithm in the case
of wide-baseline is due to the feature descriptor adopted,
more than to a limit of the algorithm. To this end our method
uses difference of Gaussians to find interesting points that
are tolerant to change in scale and rotation, and represents
them with the SIFT descriptor [Low04]. Finally it computes
correspondences among the key-points with a mixed geo-
metric and appearance based approach, as in [Pil97]. The
algorithm proposed in [Pil97] shows that a reasonably good
solution can be achieved simply by singular value decompo-
sition of an appropriate correspondence strength matrix. The
method — building on top of a work by Scott and Longuet-
Higgins [SLH91] for pattern matching, and applying it to
intensity images — is a simple and elegant matching pro-
cedure that takes into account both intensity and geometric
relationships.

Scale Invariant Features (often referred to as SIFT) were
first proposed in [Low99] and attracted the attention of the
computer vision community for their tolerance to scale, illu-
mination and pose variations. A comparative study of many
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local image descriptors [MS03], shows the superiority of
SIFT with respect to other feature descriptors for the case
of several local transformations.

We report promising results, discussing how the match-
ing behaves while the baseline grows. A comparison with
the original work shows how SIFT features make the sys-
tem more tolerant to the effects of a larger baseline. We also
report a comparison to the matching criterion for SIFT key-
points proposed by Lowe, showing that our approach is a
better compromise between accurate results and a high num-
ber of correspondences.

The paper is organised as follows. The next Section gives
a brief overview of matching algorithms for large scale vari-
ations. In Section 3 we review the SVD matching algorithm.
In Section 4 the scale invariants features and their associated
descriptor are briefly reviewed. Our modified SVD match-
ing is described in Section 5, and experimental results are
shown and discussed in Section 6. Section 7 is left to the
final remarks.

2. Previous work on matching with large scene
variations

The state-of-the art on matching algorithms is vast. In the re-
mainder of the section we sketch some of the most interest-
ing approaches in dealing with substantial scene variations,
either in scale or in the view-point.

The great part of matching algorithms address these issues
through the so-called invariant regions constructed around
salient points, typically corners, in such a way to try and
keep the characterisation of that area insensitive to view-
point and illumination changes. For instance, scale invariant
feature extraction can be achieved by using the Harris detec-
tor [HS88] at several scales, or by considering local extrema
in a pyramidal difference of Gaussians [Low04]. Once rele-
vant regions are detected, the actual feature matching takes
place. Finding appropriate region descriptors may facilitate
feature comparisons. The SIFT descriptor, better outlined
later in the paper, has been shown [MS03] to be one of the
most efficient to date.

SIFT descriptors are used in combination with multi-
scale Harris by Mikolajczyk and Schmid [MS02], while
Baumberg [Bau00] propose a matching technique based on
a similar feature and a description based on the Fourier-
Mellin transform to achieve invariance to rotation. Harris
corners are also used in [ADJ00], where rotation invari-
ance is obtained by a hierarchal sampling that starts from
the direction of the gradient. Matas et al. [MCUP02] in-
troduce the concept of maximally stable extremal region
to be used for robust matching. Essentially, these regions
are connected components of pixels which are brighter or
darker than pixels on the region’s contour. They are in-
variant to affine and perspective transform, and to mono-
tonic transformation of image intensities. Tuytelaars [TG00]

deals with wide-baseline matching extracting image regions
around corners, where edges provide orientation and skew
information, while scale variation is addressed computing
the extrema of a 2D affine invariant function; as a descrip-
tor they use generalised colour moments, while the actual
matching is done with a Malahnobis distance. In a more re-
cent work [FTG03] they establish wide-baseline correspon-
dences among unordered multiple images, by first comput-
ing pairwise matches, and then integrating them into feature
tracks each representing a local patch of the scene. They ex-
ploit the interplay between the tracks to extend matching to
multiple views. A method based on automatic determination
of local neighbourhood shape is presented in [GSBB03], but
it only works for image areas where stationary texture oc-
curs.

An alternative approach to determining feature correspon-
dences relies on prior knowledge on the observed scene,
for instance in knowing the epipolar geometry of two or
more views [SZ97, FR96]. Georgis et al. [GPK98] assume
that projections of four corresponding non coplanar points
at arbitrary positions are known. Pritchett and Zissermann
[PZ98] use local homographies determined by parallelo-
gram structures or from motion pyramids. Lourakis et al
[LTAO03] present a method based on the assumption that the
viewed scene contains two planar surfaces and exploits the
geometric constrains derived by this assumption. The spa-
tial relation between the features in each images, together
with appearance, is used in [TC02]. Recently simple order-
ing constraint that can reduce the computational complexity
for wide baseline matching, for the only case of approxi-
mately parallel epipolar lines, has been proposed in [LM04].

3. SVD matching

This section summarises the matching algorithm proposed in
[Pil97], upon which we base our key-points matching tech-
nique. The algorithm builds on top of a method for points
matching [SLH91] and adapts it to deal with pixel corre-
spondences. In [SLH91] it was shown that, in spite of the
well-known combinatorics complexity of feature correspon-
dence, a reasonably good solution can be achieved through
the singular value decomposition of an appropriate corre-
spondence strength matrix. In [Pil97] this matrix is adapted
to take into account image intensity as well as geometric
properties.

Let A and B be two images, containing m and n features
respectively (Ai, i = 1, . . .,m, and B j , j = 1, . . .,n), each of
them represented by a simple w×w image patch. The goal of
the algorithm is to put the two sets of features in one-to-one
correspondence.

The algorithm consists of three steps:

1. Build a correspondence matrix G that models both geo-
metric proximity and similarity; each element Gi j is com-
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puted as follows

Gi j =
Ci j + 1

2
e−r2

i j/2σ2
. (1)

ri j = ||Ai−B j|| is the Euclidean distance between the two
features, if we imagine them in the same reference plane,
and Ci j is the normalised correlation between them. The
parameter σ controls the degree of interactions between
features, where a small σ enforces local correspondences,
while a bigger σ allows for more distant interactions. The
elements of G range from 0 to 1, with higher values for
more correlated features.

2. Compute the Singular Value Decomposition for G: G =
VDU>.

3. Compute a new correspondence matrix P by converting
diagonal matrix D to a diagonal matrix E where each el-
ement Dii is replaced with a 1: P = VEU>. It is shown
in [SLH91] that P carries similar information of G, with
the interesting property of enhancing good pairings.

In [Pil97] experimental evidence is given that the pro-
posed algorithm performs well on short baseline stereo pairs.
In fact the performance falls when the baseline increases. It
is our target to show that the reason for this behaviour is in
the feature descriptor chosen and is not an intrinsic limit of
the algorithm.

4. Features detection in scale-space

Lowe [Low04] presented a method for extracting and rep-
resenting local features (Scale invariant features transform
key-points, also known as SIFT) tolerant to scale changes,
illumination variations, and image rotations. These fea-
tures are also claimed robust to affine distortion, change of
viewpoints and additive noise. Recently it has been shown
[MS03] that SIFT descriptors are more stable than other state
of the art interest point descriptors. In the remainder of this
section we will briefly introduce the key-points and a possi-
ble description. In Figure 1 we show the feature points that
have been extracted from two images used in our experi-
ments.

Scale-space and interest points detection in images
When approaching to computer vision one of the first re-
marks is that every object in an image assumes a differ-
ent significance if observed at a different scale. It has been
demonstrated [Lin96] that scale-space is a good framework
to handle objects in images at different scale. Indeed, scale-
space is a representation of the image which is seen at dif-
ferent resolution levels while its fine-scale structures are
deleted. The description obtained is not a simple random
suppression of details, but it is a well defined process that
guarantees linearity and spatial shift invariance. A foremost
aspect of the scale-space approach is that there are meth-
ods [Lin98] that allow to automatically choose the appropri-
ate resolution level discarding unuseful information.

Scale invariant features The process of building SIFTs
[Low04] is heavily inspired by the scale-space framework.
The process can be sketched in two phases: the first is key-
points detection in scale-space pyramid and the second is
key-points description using the image gradient at the right
level of resolution.

Key-points are detected in a structure which is a pyra-
mid of difference-of-Gaussians (DoG) filtering of the orig-
inal image. Given an image I, it is convolved twice with a
Gaussian function to obtain Iσ1 and Iσ2 : the difference of
these two images will be the first level of the pyramid. Af-
terwards the image is sub-sampled and the process to obtain
the DoG is repeated until the sub-sampled image keeps some
useful information. Once the pyramid of DoGs is completed,
maxima and minima are located. The feature detection phase
ends with a cleaning procedure for discarding low contrast
features and for filtering out edges.

Regions detected by DoG extrema are mainly blob-like
structures. There are no significant signal changes in the
centre of the blob and therefore the Gaussian filter-based
descriptors perform better in larger point neighbourhood
[MS03]. The key-point position is defined in the scale-space
to gain invariance to scale change. To achieve also invariance
with respect to image rotation another feature is attributed to
the key-point: its orientation. The orientation of a key-point
is defined using a histogram for the gradient direction in a
circular neighbourhood of the pixel.

Following [Low04], once key-points are selected the as-
sociated descriptors are computed as a composition of di-
rection histograms in the neighbouring regions of the scale-
space, shifted according to the dominant orientation of the
feature. It is remarkable to notice that this description keeps
scale information since the histogram is evaluated at the
proper level of the scale in the pyramid.

5. SVD matching using SIFT

In this section we discuss the use of the SIFT descriptor in
the SVD matching algorithm. As mentioned in the introduc-
tion the SVD matching presented in [Pil97] does not perform
well when the baseline starts to increase. The reason for this
behaviour is in the feature descriptor adopted. The original
algorithm uses the grey level values in a neighbourhood. It
is now well known that image neighbour grey level values is
a descriptor too sensitive to changes in the view-point, and
more robust descriptor have been introduced so far (see, for
instance, [ZW94, TG00, FA91]).

Results of a comparative study, performed on a set of pla-
nar scenes, of the performance of various features descrip-
tors have been reported in [MS03], where it is shown that
the SIFT descriptor is better than the other descriptors with
respect rotation, scale changes, view-point change, and local
affine transformations. The quality of the results decrease in
the case of changes in the illumination. In the same work,
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Figure 1: Example of SIFT features extracted from some of
the images used in our experiments. The square around the
feature points represent the support area of the feature.

cross-correlation between the image grey levels returned not
stable performance, depending on the accuracy of the point,
that depends strongly on the kind of transformation consid-
ered. The considerations above suggested the use of a SIFT
descriptor, instead of grey levels. We left the matrix G in
equation (1) unchanged in its form, but Ci j is now the cross-
correlation between SIFT descriptors. As it will be shown in
the next Section, this straightforward modification improves
the performance of the SVD matching, and also gives bet-
ter results, in terms of number of points correctly matched,
with respect the SIFT distance used for the experiments re-
ported in [MS03]. We do plan to experiment with different
SIFT distances in the SVD matching, which might require
to modify the form of the G matrix.

6. Experimental results

In this section we report some experiments carried out on
different image pairs and sequences. First we show some of
the matches returned by our algorithm on few image pairs.
Then we attempt a more quantitative analysis of the perfor-
mance of our algorithm on short image sequences, compared
against other two matching algorithms.

Experiments on image pairs The first lot of experiments
that we show refers to results of our algorithm on image pairs
of two different scenes. In Figures 2 (a) and 2 (b) we show

all the matches determined on two pairs of images of a desk
scene. The first one presents a reasonable level of scene vari-
ation, whereas the latter is a synthetic rotation of the first im-
age. We spotted only a wrong match in Figure 2 (a). The last
image pair is relative to a studio scene with scale variation.
The result is shown in Figures 2 (c). Our visual inspection
of the results determined only few wrong matches between
points on the border of the table.

Comparative experiments Now we report experiments
carried on different types of short images sequences. For the
first type of image sequences the camera was moving around
a complex indoor scene (i.e., with several objects), increas-
ing the baseline with respect to the camera pose for the first
frame in the sequence. The second type of images sequences
we considered are stereo image sequences, and in particu-
lar we focused our experiments on input sequences for im-
mersive video-conferencing systems. For reason of space we
show here only results on a sequence of 5 frames of the first
type, and a 30 frames stereo sequence for the second class of
data.

For each frame in the sequence we extracted a set of inter-
est points, using the DoG points detector described in Sec-
tion 4, that proved invariant to rotation and scale changes
[Low99,MS03]. We remind here that the points detected are
local scale-space extrema of the difference of Gaussians. The
size of the support region, the area used for computing the
associated descriptor, is determined from the selected scale.
We compare the performance of the SIFT based SVD match-
ing, henceforth S-SVD, against the performance of the cor-
relation based one (C-SVD), and a SIFT based point matcher
proposed by Lowe in [Low99], and used in [MS03] for mea-
suring the SIFT performance, which uses the Euclidean dis-
tance between SIFTs. We will address to this last matching
method as S-DIST. More formally the correspondence are
established as

• S-SVD: point matches are established following the algo-
rithm of Section 3

Ci j = ∑
t

(Si
t −mean(Si))(S j

t −mean(S j))

stdv(Si)stdv(S j)

where Si and S j are the SIFT descriptors;
• C-SVD: point matches are determined as above but with

ci j = ∑
t

(Ii
t −mean(Ii))(I j

t −mean(I j))

stdv(Ii)stdv(I j)

where Ii and I j are the two grey-levels neighbour;
• S-DIST: two features i and j matches if

di j = min(Di) < 0.6min(Di −{di j})

where Di =
{

dih = ||Si −Sh||
}

.

In order to discriminate between a correct match and a
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(a) (b) (c)

Figure 2: a) Matches determined for a stereo pair of a desk, with a reasonable level of scene variation. We could notice only
one wrong match between the wall and the corner of the screen. b) Matches determined for a stereo pair of a desk, the second
image is a synthetic rotation of the first one. No wrong matches have been determined. c) Studio stereo pair with scale variation.

false match we decided to compute the fundamental ma-
trix [HZ00] between the two frames using a statistically ro-
bust method, that allows us to identify the wrong matches.
In particular our implementation adopted the Least Median
of Squares regression method [MMRK91]. Needless to say
that our measure is reliable only on the assumption that the
wrong matches are less than 50% of the all matches. It is
worth to point out that with this measure the correctness of a
match differs from the common understanding, as they only
need to be consistent with the epipolar geometry. It is there-
fore possible to have a wrong match that is passed as correct
(see Figure 3 for an example).

For evaluating the performance of the three point match-
ing methods used for this work we computed: a) the to-
tal number of matches detected; b) the number of correct
matches; c) the accuracy, defined as the ratio between num-
ber of correct matches and the total number of matches de-
tected. The plot of these three value relative to the 5-frames
sequence for which we show results, can be found in Figure
4. In Figure 4 and 3 we show results of the matching between
the first frame of the sequence and the sixth and the eightieth
frame respectively. Overall we can say that S-SVD outper-
forms C-SVD in all the cases. In general S-SVD returns the
largest number of correct point matches, and total number of
point matches. In terms of accuracy the best one is S-DIST,
but S-SVD has an accuracy of more than 0.5 for almost half
the length of each sequence, that makes the quality of the
matches good enough for any state of the art robust estima-
tor [MMRK91]. On the other hand, the number of correct

matches detected by the S-DIST for the cases when the ac-
curacy of the S-SVD is below 0.5, is very often too small
(2-6) for being useful for any task.

The quality of the matches decreases for all the three
methods as the baseline starts to be too large, meaning
that none of the methods can be feasible for wide-baseline
matching, and some more work needs to be done in attempt-
ing to make the S-SVD algorithm more robust to the baseline
variation. In Figure 6 and 5 we show the results for the video-
conferencing stereo sequence. Again the S-SVD returns the
largest number of correct matches. In this case the accuracy
of the three methods are comparable. The better performance
in terms of accuracy are probably due to the fact that for this
case, being the baseline constant, it was possible a better tun-
ing of the parameters of the SVD-matching.

As last experiment we show in Figure 7 all the matches
detected by the three algorithms considered for a pair with
very large scene variation. It is evident that even if our al-
gorithms finds more correct matches than the other two, in
its present form it cannot still cope with very large scene
variation, as the other two methods considered. Work is in
progress to try and modify the similarity measure to cope
with such configurations.

7. Conclusions

In this paper we described an improved version of the SVD
matching presented in [Pil97] that is capable to deal with
stereo pairs with reasonably large baseline. The improve-
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Figure 3: Results for a 5-frames image sequence. Correct matches between first (top) and third (bottom) frame. Left: S-SVD.
Centre: C-SVD. Right: S-DIST. Note that one of the matches in the left image is a wrong match that appears to be consistent
with the epipolar geometry.

Figure 4: Results for a 5-frames image sequence. Correspondences are computed between the first frame and each other frame
in the sequence. The baseline is increasing along the sequence. Left: total number of matches detected. Centre: number of
correct matches. Right: accuracy of the method.

ment is obtained by using a more robust feature descriptor
(SIFT) than the one used in the former version of the algo-
rithm. Experimental evidence shows the better performance
of the proposed version with respect the original one, and
with respect a standard SIFT based point matcher.

More work is still necessary in trying to make the al-
gorithm feasible for wide baseline matching when the im-
ages can look too much different. In our view what should
be tried is: the use of a different interest point detector as
the improved Harris point detector discussed in [MS03], and
the use of SIFT distance measures different form the cross-
correlation used in the current version of the S-SVD.
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