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Abstract

This paper describes a method for performing Lambertian reflectance for rough and specular surfaces. Rather
than using an existing reflectance model, we present a method for estimating the reflectance function from image
data. The method makes use of the Gauss map between a surface and a unit sphere. Under conditions in which
the light source direction and the viewer direction are identical, we show how the reflectance function can be
represented by a polar function on the unit sphere. We pose the problem of recovering the reflectance function
as that of estimating a tabular representation of the polar function. A simple analysis shows how the tabular
representation of the reflectance function can be obtained using the accumulative distribution of image gradients.
By modifying the reflectance function and back-projecting, we can render the surface with alternative lighting
models. Here, we choose to back-project a Lambertian reflectance model. This allows us to be remove specularities
from shiny surfaces and compensate from boundary “flattening” for rough surfaces. We illustrate the utility of the
method on a variety of real world imagery.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Lam-
bertian correction, BRDF approximation

1. Introduction

The modelling of surface reflectance is a topic that is of piv-
otal importance, and has hence attracted considerable effort
in both computer vision and computer graphics. In graphics,
the problem is of interest since it allows physically realistic
images of synthetic surfaces to be generated. In computer
vision, if a bi-directional reflectance distribution function
(BRDF) is to hand then a number of surface analysis tasks
may be addressed. For instance Nayar and Bolle 1 have used
photometric invariants derived from the BRDF to recognise
objects with different reflectance properties. In a related de-
velopment, Dror et al. 2 have shown how surfaces may be
classified from single images through the use of reflectance
properties. Moreover, although shape-from-shading usually
relies on the assumption of Lambertian reflectance 3, if a
BRDF is to hand then photometric correction or specularity
subtraction may be applied as a preprocessing step to im-
prove the results obtained. It is interesting to note that there
have been several attempts to remove specularities from im-
ages of non-Lambertian objects 4. The main limitation of
these methods is that they rely on the use of the BRDF to
characterise the specular spike and limb. As a result, they
lack the generality required to process real-world imagery in

an unsupervised or automatic way. Finally, there has been
recent interest in describing texture as a surface relief phe-
nomenon process using ideas from physics to model the
BRDF 5.

The methods used to model or approximate the BRDF can
be divided into those that are physics-based, semi-empirical
or empirical in nature. Although the literature from physics
is vast, it is perhaps the work of Beckmann on smooth and
rough surface reflectance that is the best known in the vision
and graphics communities 6. Although, it is based on phys-
ically meaningful surface parameters, the Beckmann theory
is both intractable for analysis problems and breaks down
when the surface roughness is large or the scattering angle
is large. However, recently, Vernold and Harvey 7 have over-
come this latter problem by developing a model which ac-
counts for self shadowing on rough surfaces. By contrast, in
the graphics community it is the development of computa-
tionally efficient tools for the purposes of realistic surface
rendering that is of primary interest, and hence it is empiri-
cal models that have been the focus of activity 8, 9. One of the
most popular models is that developed by Phong 9. A survey
of reflectance and shading models can be found in 10.

However, neither the models developed in physics nor the
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empirical models developed in graphics are well suited for
surface analysis tasks in computer vision. It is for this reason
that Wolff 11 and Nayar and Oren 12 have developed semi-
empirical models that account for departures from Lamber-
tian reflectance. Although these models provide a more ac-
curate account of reflectance from rough and shiny surfaces,
there is no real methodology for estimating their underly-
ing parameters. Moreover, due to their dependence on both
viewer and light source direction, the task of approximating
the BRDF from a single image is under-constrained.

Despite these efforts, the modelling and estimation of the
bidirectional reflectance function remains an elusive task.
The main problem is that the BRDF has four degrees of free-
dom. Ward 13 has shown how to simplify matters by approx-
imating the BRDF using a Gaussian lobe. The BRDF may
also be approximated using spherical harmonics 14, splines
15 and wavelets 16. Lafortune and co-workers 17 at Cornell
have developed an approximation method that employs a set
of reciprocal, energy-preserving functions with non-linear
parameter dependance. Dana and Nayar 18 have provided a
method for collecting empirical BRDFs and have catalogued
the BRDFs for a large number of surfaces of different phys-
ical properties.

In this paper, we present a method for estimating the re-
flectance distribution from image data that avoids using basis
functions or using a predetermined BRDF to characterise the
specular spike and limb. Our method makes implicit use of
the Gauss map, i.e. the projections of the surface normals
onto a unit sphere. We map intensity values from the sur-
face to corresponding locations on the Gauss sphere. Under
conditions in which the light source direction and the viewer
direction are identical, we show how the reflectance func-
tion can be represented by a polar function on the unit Gauss
sphere. We pose the problem of recovering the reflectance
function as that of estimating a tabular representation of the
polar function. To overcome the problem that we do not have
surface normal correspondences to hand, we show how to
estimate the polar angles on the Gauss sphere using image
intensity gradients. A simple analysis shows how the tabu-
lar representation of the reflectance function can be obtained
using the accumulative distribution of image gradients.

With the reflectance distribution to hand, then a number
of different analysis and synthesis tasks may be addressed.
For instance, the acquired reflectance models may be used
to render synthetic surfaces or may be modified and back-
projected to perform view synthesis. Here as an illustration
we focus on the latter task and illustrate how the method
can be be used for Lambertian intensity re-mapping. This
is an important task since it allows both specularities to
be removed from shiny surfaces and the compensation of
boundary flattening effects for rough surfaces. In computer
vision, the identification of specularities plays an important
role in shape-analysis. For instance, the apparent movement
of specularities provides an important shape-cue 19. If spec-

ularities can be subtracted from images, then shape-from-
shading may be applied more effectively to recover surface
shape 20. Similarly, if boundary flattening effects can be
compensated, then shape-from-shading may be applied to
rough surfaces. Here we show how to backproject a Lam-
bertian reflectance model onto the imaged surface using the
inverse mapping between the Gauss sphere and the image.

2. Preliminaries

In this section, we provide the background for our method.
To commence, let the surface under study be denoted by
S ∈ <3. In practice, we will be working with brightness im-
ages formed on the image plane. Hence, we commence by
projecting the surface S onto the image plane Π. We also
construct a Gauss map for the surface, by projecting surface
normals onto a unit sphere Ŝ ∈ <3. Corresponding locations
on the surface and the sphere are such that the surface normal
directions are identical. The mapping is such that the surface
normals at corresponding locations on the surface and the
sphere have identical directions. This correspondance map-
ping between the surface S and the sphere Ŝ allows the in-
tensity values of the rendered sphere Ŝ to be mapped onto a
viewer plane Π̂ analogous to the image plane Π. The plane Π̂
is chosen so that the viewer direction vector ~V is equal to the
light-source direction vector ~L. This geometry is illustrated
in Figure 1.

Next, we consider to show how the BDRF may be ex-
pressed in terms of unit vectors in the directions of the sur-
face normal, the viewer direction and the light source di-
rection. To be more formal, let the unit normal vector to
the surface at the location s with pixel coordinates ( j,k) be
~Ns. The light source, viewer and surface normal vectors can
be expressed in terms of the elevation and azimuth angles
(θL,αL), (θV ,αL) and (θN ,αNs) thus

~L = [sin(θL)cos(αL),sin(θL)sin(αL),cos(θL)]T

~V = [sin(θV )cos(αV ),sin(θV )sin(αV ),cos(θV )]T

~Ns = [sin(θNs)cos(αNs),sin(θNs)sin(αNs),

cos(θNs)]
T (1)

We use the vector ~Ns as a reference and define the follow-
ing elevation and azimuth angle offsets for the light-source
and viewer directions αL,Ns = αNs −αL, αV,Ns = αNs −αV ,
θL,Ns = θNs −θL and θV,Ns = θNs −θV .

For objects illuminated by a single light source, the total
reflectance from a visible point on the surface can be as-
sumed to be a linear combination of the ambient, diffuse and
specular components. Hence, making use of the variables de-
fined above and normalising to unity the total reflectance is
given by

B(αL,Ns ,αV,Ns ,θL,Ns ,θV,Ns )s = (1− Id − Is)+

Id fd(θL,Ns )+ Is fs(αL,Ns ,αV,Ns ,θL,Ns ,θV,Ns )
(2)
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where Id and Is are positive constants satisfying the condi-
tion, Id + Is ≤ 1 and, fd(θL,Ns), fs(αL,Ns ,αV,Ns ,θL,Ns ,θV,Ns)
are the reflectance functions for the diffuse and specular
components.

3. Orientable Surfaces

As noted in the previous section, the directional depen-
dence of the specular term in the reflectance function com-
plicates the approximation of the intensity function if the
light-source and viewer directions are different from one an-
other, i.e. ~L 6=~V. Furthermore, although the assumption that
the diffuse term is independent of the viewer direction re-
duces the dimensionality of the problem, it severely restricts
its real-world utility. As a result, when more complex diffuse
reflectance models (for instance the Oren and Nayar model
12) are employed or the directional dependence of the specu-
lar term is taken into account, then the problem of separating
the reflectance components from a single image is under-

List of symbols

S Surface under study
Ŝ Sphere in <3

Π, Π̂ Planes orthogonal to ~V
IΠ(sin(θNs ) cos(αNs ), Mapping of the surface S onto the

sin(θNs ) sin(αNs )) plane Π
IΠ̂(sin(θp) cos(αp), Mapping of the sphere Ŝ onto the

sin(θp) sin(αp)) plane Π̂
~Np , ~Ns Surface normals
F(θp) Parametric function
mp Slope of the line tangent to F(θp)

Figure 1: Structure of the mapping process

constrained. Even when multiple images are collected from
different viewpoints or are acquired under different illumi-
nation conditions, then the recovery of the combined specu-
lar, diffuse and ambient reflectance components may not be
tractable in a closed form.

To overcome this problem, in this paper we exploit the
differential geometry of orientable surfaces to approximate
the reflectance function using data acquired from a single
image. We make use of the fact that given an orientable sur-
face S ∈ <3, there exists a function F : <3 7→ <3 that maps
the normal-vector at any point on the surface S to a corre-
sponding normal-vector at a point on a unit Gauss sphere
Ŝ ∈ <3. As noted above, this mapping is referred to as the
Gauss-map of the surface S. Since the vectors ~L and ~V re-
main fixed over all locations on the image plane, it follows
that all the intensities present in the image can be mapped
completely onto a hypothetical unit Gauss sphere Ŝ viewed
from the direction ~V. The illuminated Gauss sphere together
with its field of surface normals can be projected onto a im-
age plane Π̂ which is perpendicular to the viewer direction
~V. This process is illustrated in Figure 1.

Let the surface under study be S ∈<3. The surface normal
vector ~Ns at the point s with coordinates j,k on the surface S
can be associated with a corresponding normal-vector ~Np at
a point p on the Gauss sphere Ŝ. On the image plane Π, the
two vectors can be written in polar form as

~Ns = ~Np = [sin(θp)cos(αp),sin(θp)sin(αp),cos(θp)]
T

(3)
In the above expression, αp ∈ [0,2π) and θp ∈ [0, π

2 ) are
respectively the azimuth and elevation angles of the projec-
tion of surface normal from the corresponding point p on
the Gauss sphere Ŝ to the plane Π̂. Provided that the surface
normal correspondence can be established, then the inten-
sity mapping of the Gauss sphere Ŝ to the plane Π̂ can be
represented by the function

IΠ̂(sin(θp)cos(αp),sin(θp)sin(αp))

= IΠ(sin(θNs)cos(αNs),sin(θNs)sin(αNs))

= B(αL,p,αV,p,θL,p,θV,p)

(4)

where IΠ(sin(θNs)cos(αNs),sin(θNs)sin(αNs)) is the
mapping of the surface S to the image plane Π,
B(αL,p,αV,p,θL,p,θV,p) is the BRDF for the surface S
and αL,p, αV,p, θL,p and θV,p are angular variables given
by αL,p = αp − αL, αV,p = αp − αV , θL,p = θp − θL and
θV,p = θp −θV .

As a result, the mapping of the Gauss sphere Ŝ to the plane
Π̂ is given by the BRDF of a sphere with the same optical
and reflectance properties as the surface S when viewed from
the direction ~V and illuminated by a light source in the direc-
tion ~L. Moreover, since it is formed by orthographic projec-
tion from a sphere, the image can be represented as a polar
function with four degrees of freedom.

To take our analysis further, we note that the problem
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of recovering the reflectance distribution function from a
single image is an ill-posed one. Since the BRDF is four-
dimensional, we require additional restrictions to approxi-
mate it. At this point, we note that the angular variables
αL,p,αV,p, θL,p and θV,p are determined by the angles θp and
αp. To simplify matters, we choose to view the Gauss sphere
Ŝ in the light source direction, i.e. we set ~L = ~V. As a result,
we can write αL,p = αVp and θL,p = θVp . Further, without
any loss of generality we can set αL = θL = 0.

By viewing the Gauss sphere in the light source direction,
we simplify the mapping from the Gauss sphere Ŝ onto the
plane Π̂. The simplified polar function has two degrees of
freedom and is given by

IΠ̂(sin(θp)cos(αp),sin(θp)sin(αp)) = f (θp,αp) (5)

We now take advantage of the fact that the expression above
is defined only in terms of the polar coordinates of the point
p on the Gauss sphere Ŝ. We also note the following. First,
all surface normals on the same circle of lattitude have the
same elevation angle θp irrespective of the azimuth angle
αp. Second, the assumption ~V =~L implies that the BRDF on
the Gauss sphere is not dependant on the angle αp. Hence,
the observed brightness values on the Gauss sphere can be
generated by revolving the function

g(θp) = f (θp,0) (6)

in azimuth angle αp about the axis defined by the viewer
and light source directions. As a result, the problem of de-
scribing the observed brightness distribution over the Gauss
sphere reduces to that of approximating the function g(θp)
and computing its trace of revolution.

4. Parametric Representation

Our idea in this paper is to approximate the BRDF from a
single image. We show how this can be performed by us-
ing the differential structure of the observed brightness on
the image plane Π to estimate g(θp). Hence, we commence
rewriting g(θp) as the integral of the partial derivative of the
observed brightness with respect to the angular variable θp.
As a result, g(θp) is given by

g(θp) =
1

2π

∫ 2π

0

∫ θp

0

∂ f (θ,α)

∂θ
dθdα (7)

In other words, the BRDF on the unit Gauss sphere can
be expressed in term of the cumulative distribution of the
derivatives of the reflectance on the unit Gauss sphere.

Our aim is find a polar parametric function F ∈<2 whose
trace can be used to approximate that of the generator of
the BRDF on the unit Gauss sphere Ŝ, i.e. g(θp). The radial
coordinate of the function is the Euclidean distance between
the point p and the center-point of the Gauss sphere Ŝ on the
viewer plane Π̂, i.e.

rp =
√

(sin(θp)cos(αp))2 +(sin(θp)sin(αp))2 = sinθp

(8)

Hence

F =

[

rp

g(θp)

]

=

[

sin(θp)
1

2π
∫ 2π

0
∫ θp

0
∂ f (θ,α)

∂θ dθdα

]

(9)

Unfortunately, since the surface normals are not to hand,
the correspondences between locations on the surface and
the Gauss sphere are not available. Hence, the quantity θp is
unkown. In other words the function F only allows the sur-
face S to be mapped onto the Gauss sphere Ŝ in an implicit
manner. In the next section we show how the lack of cor-
respondence information can be overcome by equating the
image intensity gradient and the slope of the function g(θp).
This allows us to approximate θp by performing numerical
integration using the cumulative distribution of the inverse
image gradients. In this way the BRDF can be approximated
without the need to recover the surface normals.

5. BRDF Approximation

Our aim in this section is to show how the distribution of in-
tensity gradients on the image plane can be used to estimate
the BRDF. We do this by using image gradients to determine
the mapping onto the Gauss sphere. To commence, we note
that the derivative of the functions F at the point p is

mp =
∆g(θp)

∆sin(θp)
(10)

Since the intensity of the point s on the image, i.e. ν(s), is
mapped onto the point p on the Gauss sphere, we can equate
mp with the magnitude of the image intensity gradient, i.e.
mp =| ∇ν(s) |. The image gradient ∇ν(s) can be computed
using the formula

∇ν(s) =

[

∆νx(s)
∆νy(s)

]

=
1
r

[

ν( j +1,k)−ν( j−1,k)
ν( j,k +1)−ν( j,k−1)

]

(11)

where r is the spacing of sites on the pixel lattice. Further-
more, on the Gauss sphere Ŝ, it is always possible to choose
points to be sampled so that the difference in brightness is a
constant τ. As a result, we can write

| ∇ν(s) | ∆sin(θp) ≈ ∆g(θp) ≈ τ (12)

Re-arranging terms, we get

∆sin(θp) ≈
τ

| ∇ν(s) |
(13)

To recover θp from the expression above we perform numer-
ical integration. To do this we order the image intensity gra-
dients such that ν(1) < ν(2) < .. . < ν(s) and ν(s) = g(θp).
The numerical estimate of sin(θp) is

sin(θp) ≈
s

∑
i=1

τ
| ∇ν(i) |

+κ (14)

where κ is the integration constant. Hence, we can use the
accumulative distribution of inverse gradients to index the
azimuthal angle on the unit Gauss sphere. This indexation
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property means that we can approximate the function F or
equivalently g(.) by tabulation.

To pursue this idea, in principle, we only require a single
image intensity gradient corresponding to each of the dis-
tinct brightness levels in the image. In practice, we make use
of the accumulative distribution of image intensity gradients
in order to minimise the approximation error by averaging.
Let H(l) = {s | ν(s) = l} be the set of pixels with intensity
value l. For the intensity value l = g(θp), the average gradi-
ent is given by

ĥ(l) =
∑(s)∈H(l) | ∇ν(s) |

| H(l) |
(15)

With the average image intensity gradient to hand, we de-
fine the tabular approximation F̂ to F(θp) as the set of Carte-
sian pairs

F̂ = {(
(

τ
l

∑
i=1

ĥ(i)−1 +κ
)

, l); l = 1,2, . . . ,nmax} (16)

where nmax is the maximum brightness value in the image.
All that remains is to compute the constants τ and κ. We do
this by making use of the maximum and minimum values of
sin(θp). Since the maximum and minimum values of sin(θp)
are unity and zero when θp = π

2 and θp = 0, we can set κ to
unity. Evaluating the numerical integral for l = nmax (i. e.
sin(0) = 0), we get

τ = −
nmax

∑
i=1

ĥ(i)−1 (17)

In practice the inverse of the average intensity gradient is
stored as a floating-point vector J whose elements indexed
l = {1,2, . . . ,nmax} are given by

Jl =

{

ĥ(l)
−1

if | H(l) |6= 0

0 otherwise
(18)

The elements of the vector J corresponding to intensity val-
ues l not present in the image are set to zero. To overcome
divide-by-zero problems, we interpolate the zero elements
of the vector using piecewise-linear interpolation of the ad-
jacent non-zero elements to compute a vector Ĵ.

6. Lambertian Re-mapping

In this paper, we illustrate the utility of our method for ac-
quiring the reflectance distribution function. In particular, we
illustrate how it may be used for re-mapping a Lambertian
reflectance model onto an imaged surface. This re-mapping
may be used to both remove specularities from shiny sur-
faces and to correct for reduced boundary contrast for rough
surfaces.

The idea underpinning our method is to re-map the im-
age intensities using the inverse mapping from the Gauss
sphere onto the original image. The reflectance function may
be modified in a number of ways. For instance, we could

exchange the tabular representations acquired from images
of different surfaces. Alternatively, an analytic reflectance
model can be back-projected. However, here we confine our
attention to a simple Lambertian reflectance model.

Our aim is to use the tabular representation of the re-
flectance function Ĵ to retrieve the Lambertian intensity at a
given point on the surface S illuminated from a light source
with direction vector (0,0,1). To do this we note that the
tabular function F̂ is a list of Cartesian pairs in which the
first element is the sine of the tilt angle of the surface nor-
mals, i.e. sinθp while the second element is the associated
image brightness , i.e. l at a point indexed on the surface S.
For Lambertian reflectance, the observed reflectance is prop-
ertional to the cosine of the angle of light incidence, i.e. to
cosθp. Hence, we can perform Lambertian re-illumination
by noting the observed brightness l at a pixel and identifying
the associated value of sinθp; the corresponding corrected
Lambertian intensity is cosθp.

This intensity re-mapping can be effected using the mea-
sured image gradient. Suppose that S∗s is a neighbourhood of
points of area ε centred at the pixel location indexed s. We
compute corrected Lambertian intensity by averaging cosθp

over the neighbourhood S∗s . Since the angle θp is defined on
the Gaussian sphere, while the intensity is required on the
image plane, we weight the average using the appropriate
Jacobian. From the analysis presented in the follwoing sec-
tion it follows that the weighting factor is proportional to the
image gradient. Thus, the corrected Lambertian intensity at
the pixel s is given by

ρ̂s =
1

µ(s) ∑
s∗∈S∗s

{

T (s∗) | ∇ν(s∗) |

}

(19)

where

µ(s) = ∑
s∗∈S∗s

| ∇ν(s∗) | (20)

is the average intensity gradient and

T (s∗) = cos

(

arcsin

(

τ
ν(s∗)

∑
i=1

ĥ(i)−1 +κ
))

(21)

where ν(s∗) is the raw image intensity at the point s∗ ∈ S∗ on
S. This averaging process effectively smooths the estimate of
the Lambertian reflectance.

7. Experiments

In this section we report our experimental evaluation of the
new method for estimating the reflectance distribution func-
tion and using it for specularity removal and limb correction.
The study is divided into two parts. We commence with a
study of synthetic imagery aimed at evaluating the perfor-
mance of the method on data with known ground truth. The
second part of the study focuses on real world data and aims
to demonstrate the utility of the method on objects composed
of a variety of materials.
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7.1. Synthetic Images

Our goal in this section is to evaluate the effectiveness of
the specularity removal process on synthetic data. The syn-
thetic data used for our experiments consists of 54 images
of spheres rendered using the Phong and Oren-Nayar re-
flectance models under different lighting conditions. For our
experiments we have set the material color to (0.5,0.5,0.5).
To ground-truth the method, we have compared the results of
specularity removal with a sphere rendered using Lambert’s
law. For our experiments, we have set the viewer direction
to be ~V = (0,0,1). We have varied the angle between the il-
luminant ~L and the viewer direction in increments of 0.157
radians between 0 radians and π

4 radians. In the case of the
Phong model, we have used the three different shininess pa-
rameter settings η = 10, η = 100 and η = 200. In the case
of the 36 spheres rendered using the Oren-Nayar model, we
have varied the roughness parameter σ over the interval [0,1]
in steps of 0.2.

We commence by illustrating some of the qualitative
properties of the specularity subtraction method. In Figure 2
from left-to-right the different panels show an example im-
age of a Phong sphere, the output image after Lambertian re-
mapping and the Lambertian ground-truth image. The origi-
nal image contains a clear specularity. The Lambertian re-
mapping cleanly removes the specularity, and there is no
residual image structure in the proximity of specularity. The
re-mapped image and the ground truth Lambertian image are
in good agreement.

In Figure 3, we show the plots of the tabular approxi-
mation to the reflectance function for the Phong sphere in
Figure 2. The panels in the top row show are from left-to-
right, the raw vector J and its piecewise linear interpolation
Ĵ. The process may be applied identically to each of the three
colour-channels comprising the image. Furthermore, since
the color material for our synthetic imagery has been set
to (0.5,0.5,0.5), the image brightness is the same for each
of the three RGB colour-channels. As a result, the plots for
the three colour bands are identical. Hence, we only show
a single plot that applies equally to any of the three colour-
channels in the image. In the bottom row of the figure , we
show the plots of the estimated function F̂(θp) and the ap-
proximated mapping IΠ̂(sin(θp)cos(αp),sin(θp)sin(αp)) =
f (θp,αp). In these two plots, the specular structure of the re-
flectance function is clearly visible as a spike near the origin.

Figure 2: Input image (sphere rendered using the Phong model),
output image and ground-truth Lambertian sphere.
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Figure 3: Top row: plots of the vectors J and Ĵ; Bottom row: plots
of F̂(θp) and f (θp,αp) computed from the Phong sphere in Figure
2

We now turn our attention to the errors associated with
the reflectance distribution estimates. In the left-hand side
of Figure 4, we show the mean squared error of the ap-
proximated reflectance function f (θp,αp) with respect to
the ground-truth as a function of both the angle between the
viewer and light source directions, and the shininess param-
eter η for 18 Phong spheres. The right-hand plot in Figure
4 shows the error plot for the 36 Oren-Nayar spheres as a
function of the parameter σ and the angle between the light
source and viewing directions. From these plots we draw the
following conclusions. First, we note that our method be-
haves better with shiny surfaces than it does with rough ones.
Second, the errors are greatest when θp '

π
2 , i.e. near the oc-

cluding boundary. This is because the gradient distortion is
greatest where the intensity is zero.

7.2. Real-World Images

Our real-world imagery consists of pictures of objects com-
posed of white porcelain and of terracota. The porcelain is
shiny and hence exhibits well collimated specularities. The
terracotta is rough. However, it does have a weak specu-
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Figure 4: Error plots.
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lar component and this results in a more diffuse specular
structure. We have performed experiments on real-world im-
ages of two shiny porcelain objects and one rough terra-
cota object. The rough object is a bear. The shiny objects
are two vases and an urn. We have acquired the images un-
der controlled lighting conditions in a dark room using an
E10 Olympus digital camera. The objects are illuminated
by a single collimated tungsten light source of known di-
rection. For our experiments, the estimated light source vec-
tor is~L = (0.43,0,0.9)T . To ground-truth the specularity re-
moval method, we have used two polaroid filters. One filter
is placed between the object and the light source. A second
filter is placed between the object and the camera. For each
object we collect two images. The first of these is with the
polaroids aligned. The second image is collected with the
polaroids crossed. When the polaroid filters are crossed, then
the specularities are extinguished since they correspond to
coherent reflectance from the object surface.

In Figure 5, we show the results obtained with the three
objects used in our experiments. In the top row From left to
right the panels show the original images of the terracotta
bear and the two porcelain objects (i.e. the vase and the urn).
These images are collected with aligned polaroids. In the
second row we show the result of Lambertian re-mapping.
For comparison, in the third row, we show the images ob-
tained using crossed polaroids. In the bottom row of the fig-
ure we show the gray-scale difference between the cross-
polaroid images and the images resulting from Lambertian
re-mapping. There are a number of observations that can be
drawn from these examples. We turn our attention first to
the terracotta object. Because of its intrinsic roughness, it
appears relatively flat. There is also some surface brighten-
ing due to a weak and dispersed specular component; this
is evident on the belly and snout of the bear. After Lamber-
tian re-mapping, the intensity gradients across the the object
are enhanced (i.e. it appears less “flat”) and the weak spec-
ular structure is removed. In the case of the two porcelain
objects, there are sharp specularities on the surfaces. These
are cleanly removed, with no evident residual structure. In
the case of both the terracotta and the porcelain objects, the
agreement with the crossed polaroid images is good. Finally,
from the difference images it is clear that the specularity sub-
traction is accurate.

8. Conclusions

In this paper, we have presented a novel approach for ap-
proximating the BRDF of possibly specular objects from a
single image. Although the new method is applicable only
when the light source and viewer directions are approxi-
mately equal, it can be used to estimate the BRDF so that in-
verse rendering may be performed. Furthermore, the method
is a computationally efficient alternative to the approxima-
tion of the BRDF via basis functions, which is the stan-
dard approach in the literature. To illustrate the utility of the
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Figure 5: Results on real-world images.

method, we have used the estimated reflectance function to
perform Lambertian re-mapping. This allows us to remove
specularities from shiny objects and also to compensate for
boundary “flattening” effects for rough surfaces.
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