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Abstract
The ’beauty’ of Clifford’s Geometric Algebras is its ability to incorporate other algebras and it is the ’mother’
algebra for all algebras. This paper introduces the advantage of using this algebra by combining and augmenting
certain group of algebras, such as linear algebra, quaternion algebra, the Grassmann algebra and projective
algebra to simplify mathematical manipulations in 3-dimensional rotations and projective geometry, especially
in the context of mixed reality environment. Those ’augmented’ representations are shown with applications in
the mixed reality environment, especially for registration and computer vision based object recognition issues.
Some simple scenarios with place-holder objects are described at the end for a full understanding of the mixed
reality applications before other most recent engineering and computer science areas using this algebra for their
applications are briefly discussed.
Keywords: Clifford algebra, rotors, projective split, mixed reality, registration, computer vision based object recog-
nition, place holder objects

1. Introduction

A central problem in the 1st-half of the 19th century was how
best to represent 3-D rotations. When Hamilton introduced
Quaternion Algebra,H in 1843, he was able to manipulate
compositions of triplets inR3. This algebra contains 4 ele-
ments{1,i, j,k} andi j = k =− ji, i2 = j2 = k2 = i jk =−1.
This non-commutative algebra is isomorphic to even sub-
algebras of Clifford Algebra. In a separate development,
Grassmann pioneered the Exterior Algebra in 1844. This de-
fined what we now call a bivectora∧b of vectorsa andb,
and it is anti-commute,a∧b =−b∧a.

Geometric Algebras (GA) were created by William K.
Clifford in 1878 when he combined inner products with
Grassmann’s exterior algebra [1]. One of the main features
of GA is the ability to ’improve’ Euler angles representa-
tions in quaternion terminology, via new defined Rotors in
exponential form [2] [3]. These rotors are particular useful
for 3-D rotation, involving kinematics and dynamics manip-
ulations [8] [9] [10]. They also ’speed up’ concatenation of

matrices [6] [7]. In Computer Vision applications, Geomet-
ric Products can further represent homogeneous coordinates
and ’map’ perspective projections of 4-D onto its 3-D equiv-
alent, via the Projective Split [11] [12].

This special property of GA is important, especially to
the video displays which need the highest accuracy possible.
Mixed Reality (MR) and Augmented Reality (AR) displays
are rather different from the ordinary Virtual Reality (VR)
displays we usually see. During training of a new pattern,
projective geometry is extensively used in the object recog-
nition algorithms. MR/AR involves extra procedures, such
as system calibration and registration of virtual objects over-
lay onto the real scene. Best methodologies have to be im-
plemented according to hardware used to assure that an AR
system works at its best ability.

2. Using Clifford Algebra

Using orthonormal bases{e1,e2, ...,en} for Rn, the Exterior
Algebra,∧Rn has bases
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{1,

e1,e2, ...,en,

e1∧e2,e1∧e3, ...,en−1∧en,

...

e1∧e2∧ ...∧en}
The special properties, i.e. associativity and anticommu-

tativity of this exterior product make bivectors so useful for
practical manipulations.

In conventional vector algebra, there are two standard
products : Dot product,a · b (scalar) with magnitude
|a||b|cosθ; Cross product,a× b (vector) with magnitude
|a||b|sinθ, with |a| and |b| are the length of vectorsa and
b, θ is the angle between them. The cross product is a fun-
damental notation used in engineering and sciences, but it is
not accurate enough! Please refer to [2] [3] [4] [5] for some
fundamental arguments, especially in some physical mathe-
matics definitions. Therefore, a new product called : Outer
product,a∧ b (bivector) with magnitude|a||b|sinθ was in-
troduced.

Figure 1: A bivector

It is not a scalar or a vector, but a directed area in the plane
segment containing vectorsa andb. We interpret(a∧b)∧c
as the oriented 3-D volume obtained by sweeping the bivec-
tor a∧b along vectorc. It is called trivector. It is anticommu-
tative,a∧b=−b∧a; distributive,a∧(b+c) =a∧b+a∧c;
and associative,a∧ (b∧c) = (a∧b)∧c

So far we have a symmetric inner product and anti-
symmetric outer product. Clifford’s great idea was to intro-
duce a new product which combine the two. This is the Ge-
ometric Product, written simply asab,ab= a·b+a∧b, [1].
The right-hand side is a sum of two distinct objects, a scalar
and a bivector. From the symmetry and anti-symmetry prop-
erties of the right-hand side,ba = a · b− a∧ b . It follows
that,a ·b = 1

2(ab+ba), a∧b = 1
2(ab−ba)

2.1. Applications of Clifford Algebra in 2-Dimensional
Space,Cl2

Consider a 2-D space, i.e. a plane spanned by two orthonor-
mal vectorse1, e2. These basis vectors satisfye1

2 = e2
2,

e1· e2 = 0 . The final entity present in the 2-D algebra is the
bivectore1∧e2. This is the highest grade element in the al-
gebra, which is often called pseudoscalar. The pseudoscalar

is defined to be right-handed, so thate1 sweepse2 in a right-
handed sense. The full algebra is spanned by

1 {e1,e2} e1∧e2

1 scalar 2 vectors 1 bivector

We denote this algebra byCl2. To study the properties
of the bivectore1 ∧ e2, we first note thate1e2 = e1 · e2 +
e1 ∧ e2 = e1 ∧ e2, e1 ∧ e2 = −e2 ∧ e1 . Also note that,
(e1∧ e2)e1 = (−e2e1)e1 = −e2e1e1 = −e2, (e1∧ e2)e2 =
(e1e2)e2 = e1e2e2 = e1 . Similarly, acting from the right,
we havee1(e1e2) = e2, e2(e1e2) = −e1 Normally a pseu-
doscalar is denotedI . In this caseI = e1∧ e2, I2 = (e1∧
e2)2 = e1e2e1e2 =−e1e1e2e2 =−1

For pure geometric considerations, we have discovered a
quantity, whose squares equal to –1. This fits with the fact
that 2 successive left (or right) multiplications of a vector
by e1e2 rotates the vector through 180◦, equivalent to multi-
plying by -1. Suppose that we have two completely arbitrary
elements of theCl2 algebra,A andB, which can be decom-
posed in terms of{e1,e2} frame :A = a0 + a1e1 + a2e2 +
a3e1∧e2, B = b0 +b1e1 +b2e2 +b3e1∧e2

The product of these two elements can be written asAB=
p0 + p1e1 + p2e2 + p3e1∧e2 where

p0 = a0b0 + a1b1 + a2b2 − a3b3, p1 = a0b1 + a1b0 +
a3b2−a2b3, p2 = a0b2 +a2b0 +a1b3−a3b1, p3 = a0b3 +
a3b0 +a1b2−a2b1

This multiplication law is easy to represent as part of a
computer language. In general, however,AB 6= BA

One of the main applications ofCl2 is the ability to sim-
plify vector algebra inR4. It is isomorphic, as an associa-
tive algebra, to the matrix algebra representations of the real
R2xR2 matrices. WritingCl2 bases in matrix form, we have

1≡
[

1 0
0 1

]
, e1≡

[
0 1
1 0

]
,

e2≡
[

1 0
0 −1

]
, e1∧e2≡

[
0 −1
1 0

]

Please refer to [6] [7] for further details on the appli-
cations ofCl2 in tri-diagonalising system matrices of large
mass matrix,M, damping matrix,C and stiffness matrix,K
in vibration terminology. A simple illustration is shown in
the figure as follows.

Figure 2: Mapping of R2xR2 of a matrix into Cl2
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2.2. Applications of Clifford Algebra in 3-Dimensional
Space,Cl3

In Cl3 , the 3-D algebra is spanned by

1 {ei} {ei ∧ej} e1∧e2∧e3

1 scalar 3 vectors 3 bivectors 1 trivector

These define a linear space of dimension 8=23. Notice that
the dimensions of each subspace are given by the binomial
coefficients. Recall that,(e1e2)2 = (e2e3)2 = (e3e1)2 =−1

A vector can be split to its parallel and perpendicular com-
ponents,a= a‖+a⊥, aB= (a‖+a⊥)B, butB= a‖∧b . We

see thata‖B= a‖(a‖∧b) =a‖(a‖b) =a‖
2b which is a vec-

tor, whereasa⊥B = a⊥(a‖ ∧ b) = a⊥ ∧ a‖ ∧ b, which is a
trivector. We therefore writeaB = a ·B+ a∧B . Note that
a ·B = a‖

2b = −(a‖b)a‖ = −B ·a, a∧B = a⊥ ∧a‖ ∧b =
a‖∧b∧a⊥ = B∧a,a·B= 1

2(aB−Ba), a∧B= 1
2(aB+Ba)

Since(e1e2)2 = (e2e3)2 = (e3e1)2 =−1, writeB1 = e2e3,
B2 = e3e1, B3 = e1e2, we haveB1

2 = B2
2 = B3

2 = −1,
B1B2 = −B2B1 . This recover the Hamilton’s Quaternion
Algebra : i2 = j2 = k2 = i jk = −1, i j = − ji . In fact,
Quaternions were bivectors all along! The pseudoscalar,
I = e1e2e3. Each of the basis bivectors can be expressed as
the product of the pseudoscalar and a dual vector,e1e2 =
Ie3,e2e3 = Ie1,e3e1 = Ie2 . The square of the pseudoscalar,
I2 = e1e2e3e1e2e3 = e1e2e1e2 = −1. Finally, we consider
I(e1∧e2) = Ie1e2e3e3 = IIe3 =−e3 . This affords a defini-
tion of the vector cross product in 3-D asa×b=−I(a∧b) =
−Ia∧b

Suppose that we reflect the vectora in the hyperplane or-
thogonal to some unit vectorm, a‖ = a ·mm, a⊥ = a∧mm

. The result of reflection isa′ = a⊥− a‖ = −a ·mm+ a∧
mm= −(m· a+ m∧ a)m = −mamThis remarkably com-
pact formula only arises in GA. We can also proof that inner
products are unchanged by reflections,a′ · b′ = (−mam) ·
(−mbm) = 〈mammbm〉= 〈mabm〉= 〈mmab〉= a· b . How-
ever, the outer product, in this case the bivector under re-
flections isa′ ∧b′ = (−mam)∧ (−mbm) = 〈mammbm〉2 =
〈mammbm〉2 = ma∧bm

Bivectors do not quite transform as vectors under reflec-
tions. This is the reason for the confusing distinction be-
tween polar and axial vectors in 3-D. Axial vectors are really
bivectors and should be treated as such.

A rotation in the plane generated by two unit vectorsm
and n is achieved by successive reflections in the (hyper)
planes perpendicular tomandn.a′ =−mam, a′′=−na′n=
−n(−mam)n = nmamn. We define rotor,R= nm . We can
now write rotation asa→ RaR∗. This formula works for
any grade of multivectors, in any dimension! Note thatR is
the geometric product of two unit vectorsn andm, R= nm=
n·m+n∧m= cos(θ)+n∧m. So, what is the magnitude of
the bivectorn∧m ?

(n∧m)× (n∧m) =〈n∧mn∧m〉= 〈nmn∧m〉= n· [m·
(n∧m)] =n · (m· cos(θ)−n) = cos2(θ)−1 =−sin2(θ)

We therefore define a unit bivector in them∧n plane by
û = m∧n

sin(θ) , û
2 = −1 . Now, we haveR = cos(θ)− ûsin(θ).

This is nothing else than the polar decomposition of a com-
plex number, with the unit imaginary replaced by the unit
bivector, û. We can therefore writeR = exp{−ûθ}. Now
recall the formula for a rotationx′ = e−Iφ/2xeIφ/2, we can
write R= e−ûθ/2, which gives a rotation,a→ e−ûθ/2aêuθ/2.
Since rotor,R is a geometric product of two unit vectors, we
see immediately thatRR∗ = nm(nm)∗ = nmmn= 1 = R∗R

Lets see the relation between quaternions and rotors. If
Q = {q0,q1,q2,q3} represent a quaternion, then the rotor
which perform the same rotation is simply

R= q0︸︷︷︸+q1(Ie1)−q2(Ie2)+q3(Ie3)︸ ︷︷ ︸
scalar bivectors

The quaternion algebra is therefore a similar representa-
tion of Cl3.

Figure 3: Rotation of a Rigid Body

2.3. Applications of Clifford Algebra in 4-Dimensional
Space,Cl4

In Cl4 , the 4-D algebra is spanned by

1 {ei} {ei ∧ ej} I ∧ ei I

1 scalar 4 vectors 6 bivectors 4 trivectors pseudoscalar

These define a linear space of dimension 16=24. The
Grassmann-Cayley’s double algebra expresses the ideas of
projective geometry, such as the meet and join very ele-
gantly, however, it lacks some key concepts, which the ge-
ometric products can complement to reduce the computa-
tional cost in calculations.

This section introduce projective geometry and computer
vision in general, then howCl4 can be used to represent 3-
D transformations and generalised projection in 4-D, via the
concepts of projective split and projective transformations.
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The next section explains briefly projective geometry and its
best representation.

A 3D-to-3D (P3 to P3) projective transformation has 15-
dof,




x1

x2

x3

x4


 =




t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44







X1

X2

X3

X4




The ability of homogeneous coordinates to represent a
general displacement as a single 4x4 matrix and to linearize
nonlinear transformations has made perspective projection
to be investigated easily on its properties, such as intersec-
tion of lines, its ’principle of duality’, differential and inte-
gral invariants. This is crucial especially when there are a
series of perspective transformations to be concatenated into
a single homogeneous matrix. Please refer to [14] for further
details on these.

A general 4x4 perspective projective transformation ma-
trix can make use of the GA framework to analyse one of the
best properties of homogeneous coordinates, i.e. to linearize
nonlinear transformation, as illustrated below.

x = x1
x4

= t11X1+t12X2+t13X3+t14X4
t41X1+t42X2+t41X3+t44X4

y = x2
x4

= t21X1+t22X2+t23X3+t24X4
t41X1+t42X2+t41X3+t44X4

z= x3
x4

= t31X1+t32X2+t33X3+t34X4
t41X1+t42X2+t41X3+t44X4

In order to convert these nonlinear equations of 3-D Eu-
clidean space onto the 4-D vector linear space, we introduce
the following mapping functions :

fe1 = t11e1 + t12e2 + t13e3 + t14e4

fe2 = t21e1 + t22e2 + t23e3 + t24e4

fe3 = t31e1 + t32e2 + t33e3 + t34e4

fe4 = t41e1 + t42e2 + t43e3 + t44e4

If e4 is a selected direction, we define the mapping of
the associated bivectors,eie4, i = 1,2,3 in perspective space
with vectors,σi , i = 1,2,3 in 3-D Euclidean space,

σi ≡ eie4, i = 1,2,3 where σ2
i = +1

Let us now see how we can associate points on the per-
spective space onto 3-D Euclidean space, via projective split.
Suppose a vector,χ = X1e1 +X2e2 +X3e3 +X4e4 in projec-
tive space is obtained, the projective split in the direction of
e4 is merely the geometric product ofχ ande4,

χ e4 = χ ·e4 +χ ∧e4

= X4

(
1+ χ∧e4

χ

)

≡ X4(1+ γ)

whereγ = xσ1 +yσ2 +zσ3 in the 3-D Euclidean space.

3. Clifford Algebra for the Mixed Reality Applications

Augmented Reality (AR) is a technology in which a
computer-generated image is superimposed onto the user’s
vision of the real world and Mixed Reality (MR) is another
version in the Reality-Virtually continuum which may make
use of Place Holder Objects (PHOs) to manipulate virtual
objects in a mixed environment [13]. AR or MR gives the
user extra information generated from the computer model
and it is not similar to Virtual Reality (VR) environments,
in which an immersed scene in a virtual environment is dis-
played onto the user’s view. By using an AR/MR system, the
user’s view is enhanced in the form of labels, 3-D rendered
models or shaded modifications.

Figure 4: Virtual cubes superimposed onto some pre-trained pat-

terns, [18]

Since the concepts behind the MR technologies are the
same to those which are already properly investigated and
defined in the Machine Vision contexts, therefore I am bor-
rowing those definitions used, again please refer [14]. Before
an AR/MR system can work properly, it needs to be regis-
tered and calibrated. Those registration and calibration pro-
cedures are based on the ’amazing’ properties of geometry.

Augmented Round Table for Architectural and Urban
Planning(ARTHUR) [16], [17] is an example of using the
AR technologies for architectural and urban planning appli-
cations. The project exploits the use of relevant technologies
and hardware, such as computer vision based object recogni-
tion, real-time network synchronisation and high-ended opti-
cal see-through glasses stereoscopic visualisation for multi-
user collaborative discussions on a round table.

To make an AR system functions properly, many pieces
of hardware and toolkit are needed. Therefore, Clifford Al-
gebra could be used to improve its efficiency for implemen-
tation work. A generic mixed reality system involves pre-
cise registration and calibration of the coordinate reference
frame of object-to-world, world-to-camera, and camera-to-
display. In ARTHUR, system registration procedures were
developed, i.e. the registration of the optical see-through dis-
plays, trackers and cameras on the headset, and the user’s
eyes position, based on a single user registration. The regis-
tration diagram can be shown as follow :
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Figure 5: ARTHUR : An application of Augmented Reality exploita-

tion for multi-user collaborative work

Figure 6: ARTHUR registration set-up

c.f. = coordinate reference frame; t.m. = Euclidean transforma-
tion matrix

{W} : c.f. of pattern ‘A’ to be trained as the world reference c.f.;
{T} : c.f. of another tracking device;{H} : c.f. of tracker on the
headset;{C} : c.f. camera on the headset;{G} : c.f. of the glasses
and display on the headset (assuming that the Euclidean transfor-
mation between the display and the optical see-through glasses has
already been taken care of)

TT : t.m. from{W} to {T}; TH/T : t.m. from{T} to {H}; TC :
t.m. from{W} to {C}; TC/T : t.m. from{T} to {C}; TG : t.m. from
{W} to {G}; TG/C : t.m. from{C} to {G}

Unknowns,TG = TG/C× TC, TT =−TC/T × TC

TT ,TH/T ,TC,TC/T ,TG,TG/C are all extrinsic parameters
of homogeneous transformation matrix and in the form of[

[Rot] [Trans]−→0 1

]
, where [Rot] and [Trans] are the

3-D rigid body rotation and translation respectively in Eu-
clidean space,SE(3) = SO(3) ·R3. I have shown in Sec-
tion 2.2 that a rotor in Euler representation isR= e−ûθ/2 =
cos(θ/2)− ûsin(θ/2) whereû = uxe2e3 + uye3e1 + uze1e2

is the 3-D rotational axes spanned by the bivector bases.
3-D rotation and translation from one position to another
through 3-D rigid body motion is simplya→ R(a+ t)R∗ =
R[(ax+ tx)e1+(ay+ ty)e2+(az+ tz)e3]R∗ Concatenation of
a group of rotors,R1,R2, ...,Rn is simplyR= Rn...R2R1

Another software developed in ARTHUR, which allow a
user to display the exact location of pre-trained place holder
objects (PHOs) with respect to the camera view point by just
clicking at an edge of the PHOs. The diagram below shows
a brief interface of the software when the camera is looking
at a pre-trained pattern ‘A’ with the 3D-coordinate values as
displayed.

Figure 7: Software for ’instant’ registration of user into the AR en-

vironment

The purpose of this software is to later on allow the user
to register himself (the user’s head) to the MR environment
instantly. When the user is wearing the headset, according
to his own adjustment on the inter-pupilary distance, IPD of
the display, he can then register himself onto the MR en-
vironment by just clicking at a corner of the PHOs. He is
then registered to the MR environment precisely when play-
ing with the PHOs. Since this software uses planar homo-
graphic projection terminology, 4 points are enough to solve
the correspondences in the computer vision based pattern
recognition algorithms. Using GA framework, the equiva-
lent ’linearisation’ of the nonlinear transformations in 3D-to-
plane (P3 to P2) projective transformations are the general-
isation of plane-to-plane (P2 to P2) or homographic projec-
tion. A P3 to P2 projective transformation has 11-dof, which
is sometimes also called the ’pin-hole’ camera model, can
represented as




x1

x2

x3


 =




t11 t21 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34




︸ ︷︷ ︸




X1

X2

X3

X4




pro jective matrix

A generalP3 to P2 projective model can be written in its
homogeneous matrix form, make up of intrinsic parameters
of the camera (focal length, principal axes, scaling, shear-
ing and distortion), 4-D to 3-D perspective projection, and
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extrinsic parameters representing the Euclidean transforma-
tion (rotation and translation about the optical centre).




intrinsic
parameters
o f camera







4D→ 3D
perspective
pro jection







extrinsic
parameters
(Euclidean

trans f ormation)




x = x1
x3

= t11X1+t12X2+t13X3
t31X1+t32X2+t31X3

y = x2
x3

= t21X1+t22X2+t23X3
t31X1+t32X2+t31X3

And the equivalent mapping functions are

fe1 = t11e1 + t12e2 + t13e3 + t14e4

fe2 = t21e1 + t22e2 + t23e3 + t24e4

fe3 = t31e1 + t32e2 + t33e3 + t34e4

The projective split in thisP2 to P2 projection is simply

χ e3 = χ ·e3 +χ ∧e3

= X3

(
1+ χ∧e3

χ

)

≡ X3(1+ γ)

whereχ = X1e1 +X2e2 +X3e3;γ = xσ1 +yσ2;σi ≡ eie3,
i = 1,2

We have seen above is only an example of the ’pin-hole’
camera projective model. However, in the actual world, an
AR system normally needs a few concatenation of system
matrices, although usually only one of the matrices will in-
volve those camera properties. Besides the intrinsic and ex-
trinsic parameters have to be calibrated and registered accu-
rately from the 3-D world onto a 2-D image plane, AR sys-
tems are expected to work in real-time, move about freely
within the scene and see a properly rendered augmented im-
age align onto the desired objects.

In ARTHUR, the physical counterpart of the interaction
units are those PHOs, and simple hand gestures. Since com-
puter vision based techniques for calculating the position
and orientation of 3-D objects from single projective images
are well developed, using image features, such as points,
edges and junctions, accuracy of the recognition strongly
depends on the quality of extracted 2-D features, i.e. pre-
trained images, and the ability of corresponding those fea-
tures on the images to their 3-D real object features. The dia-
gram below shows the flow-chart for a training procedure us-
ing computer vision based object recognition method. Once
again, GA is essential for writing the code of this homo-
graphic object recognition training procedure, especially for
the mathematical library implementation. Source codes are
much neater and less symbols representation when using GA
terminology.

4. Application Scenarios

Some architectural application scenarios were developed for
the ARTHUR’s partners meeting in February 2002. These

Figure 8: Computer Vision based Object Recognition

scenarios were created using the object recognition tool inte-
grated with the available intelligent architecture software of
interactive 3-D design creation toolkit [19], based on script-
ing language.

For ’real-world’ illustration purposes, the model of Swis-
sRe building is first recognised by a pre-trained PHO. It is
then placed at model of the London city plan at the desired
location as shown in figure below.

Figure 9: Model of SwissRe building is placed onto the city plan by

object recognition technique

4.1. Scenario 1 {Figure 10}

This demonstration shows 3-D models of SwissRe building
and the financial city plan in London associated with PHOs
to allow them to be picked up and turned around. The aim is
to review that the complexity of surface geometry and tex-
ture can be handled within the toolkit developed. In the an-
imation, the city plan is recognised by pattern ‘B’ and the
SwissRe model by pattern ‘A’. First, the city is placed on the
ground in the ’virtual’ world, then the SwissRe building is
controlled and placed at the empty area within the city plan.
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Figure 10: City plan model is detected by pattern ’B’ and placed

on the ground;SwissRe building model is detected by pattern ’A’;

SwissRe building is placed on the desired empty area within the city

plan

4.2. Scenario 2 {Figure 11}

This scenario shows form manipulation of a simple multi-
storey building can be controlled by the PHOs. Total floor
area is fixed with adjustable size and number of floor us-
ing scripting in the toolkit. In this simple demo, a semi-
transparent yellow building is detected by the multiple PHOs
‘A’, ‘B’ and ‘C’. Patterns ‘A’, ‘B’, and ‘C’ can control and
manipulate the height, width and depth of the building.

Figure 11: Creating a simple building in the city plan; Patterns ’A’,

’B’ and ’C’ are represented by PHOs in the environment; A multi-

storey building is built by controlling the PHOs

4.3. Scenario 3 {Figure 12}

In this final scenario, we show that the interface is able to
switch on and off various elements, so that different data sets
can be viewed. In this demo, we are showing that a blue cube
is manipulated by the PHOs ‘A’, ‘B’ and ‘C’. The scene can
also be switched to different view points such as to upper
and lower ground of the SwissRe building.

Figure 12: A blue cube is controlled by the PHOs; The view is

switched to the top floor of SwissRe model; Then, the ground floor of

SwissRe model

5. Discussion & Conclusion

This paper introduced Clifford Algebra as a unified math-
ematical framework to all technical researchers. Although
much research work have already been investigated for phys-
ical applications, and recently some in the computer science

and engineering researches, since Clifford’s Geometric Al-
gebras (GA) serve as a generalisation framework for all al-
gebras.

GA was introduced in a simple manner, suitable for all
scientific researchers, starting fromCl2 with a simple appli-
cation illustration. Then,Cl3 with the usage of rotors. This
was followed by usingCl4 for 3D-to-3D perspective projec-
tive transformation. The next section illustrated the applica-
tions of Clifford Algebra in the Mixed Reality environment,
started with an AR system registration of various coordinate
frames of reference in Euclidean space. Then, an instant reg-
istration software for a user wearing a head-mounted display
to register himself into the MR environment were demon-
strated using Clifford Algebra terminologies. Finally, Clif-
ford Algebra was incorporated into computer vision based
object recognition technologies. The final section showed
some architectural application scenarios for the direct usage
of the end-users in ’real-world’ applications.

Today, the applications of GA cover Classical Mechan-
ics, Black Holes and Cosmology, Quantum Tunnelling,
QFT, Electromagnetism, Lie Groups, Symbolic Algebras,
Screw Theory, Numerical Analysis, Structural Dynamics
and Buckling, Elasticity and Solid Mechanics, Robotics,
Computer Vision, Cybernetics, Signal and Image Process-
ing, Control Theory, Quantum Information, Computer Pro-
gramming, Biomedical Engineering and many more yet to
be discovered!
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