Vision, Video, and Graphics (2003)
P. Hall, P. Willis (Editors)

Cartoon-style Rendering of Motion from Video

J.P. Collomosse], D. Rowntree? and P. M. Hall!

! Department of Computer Science, University of Bath, Bath, England.
2 Nanomation Ltd., 6 Windmill Street, London, England.

Abstract

The contribution of this paper is a novel non-photorealistic rendering (NPR) system capable of rendering motion
within a video sequence in artistic styles. A variety of cartoon-style motion cues may be inserted into a video
sequence, including augmentation cues (such as streak lines, ghosting, or blurring) and deformation cues (such
as squash and stretch or drag effects). Users may select from the gamut of available styles by setting parameters
which influence the placement and appearance of motion cues.

Our system draws upon techniques from both the vision and the graphics communities to analyse and render mo-
tion and is entirely automatic, aside from minimal user interaction to bootstrap a feature tracker. We demonstrate
successful application of our system to a variety of subjects with complexities ranging from simple oscillatory to
articulated motion, under both static and moving camera conditions with occlusion present. We conclude with a
critical appraisal of the system and discuss directions for future work.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Animation

Keywords: Video processing, Motion cues, Non-photorealistic animation

1. Introduction

This paper presents a novel non-photorealistic rendering
(NPR) system capable of rendering motion within a 2D im-
age sequence in artistic styles. The user may stylise the ren-
dering through a parameterised framework encompassing a
diverse gamut of motion cues commonly used in animation;
augmentation cues such as streak lines, ghosting and blur-
ring are available, as are deformation cues such as the squash
and stretch techniques used to emphasise motion in cartoons.
The algorithm draws upon techniques from both the vision
and the graphics communities to analyse and render motion.
Aside from minimal interaction when bootstrapping a fea-
ture tracker, the system is entirely automatic.

Our work is motivated by a desire to render 2D image se-
quences in cartoon-like styles, a problem that decomposes
into two separable sub-goals: 1) producing temporally co-
herent shading effects in the video; 2) emphasising motion
in the image sequence. Whilst we do address the former is-
sue, this paper is primarily concerned with the latter issue
of visually depicting motion through artistic rendering. To
the best of our knowledge we believe that artistic rendering

(© The Eurographics Association 2003.

of motion within a video sequence is a novel contribution to
NPR, and one that implies interesting new application areas
for Computer Vision.

The majority of research in non-photorealistic anima-
tion focuses upon the synthesis of 2D artistically ren-
dered sequences from 3D geometries 2. Some progress
has been made in processing 2D video sequences into non-
photorealistic styles, for example the animated painterly ef-
fects proposed by Litwinowicz 3, and later Hertzmann *.
Such algorithms focus primarily upon the task of extend-
ing static NPR techniques to moving video whilst maintain-
ing temporal coherence (avoiding flickering) in the image
sequence. Whilst such methods seek to mitigate against the
effects of motion for the purposes of coherence, the literature
is relatively sparse concerning the emphasising and render-
ing of motion within the image sequence itself.

In an early paper °, Lasseter highlights many of the mo-
tion emphasis techniques commonly used by animators for
the benefit of the computer graphics community, though
presents no algorithmic solutions. Streak lines, anticipation
and deformation for motion emphasis are discussed. Recent

delivered by

www.eg.org

o @’m EUROGRAPHICS

: DIGITAL LIBRARY
diglib.eg.org

http://www.eg.org
http://diglib.eg.org

118 J. P. Collomosse, D. Rowntree and P. M. Hall / Cartoon-style Rendering of Motion from Video

Figure 1: Examples of motion cues used in traditional animation (left) and the corresponding cues inserted into a video
sequence by our system (right). From left to right: two examples of streak line augmentation cues, the latter with ghosting lines.
Two examples of deformation cues; squash and stretch and suggestion of inertia through deformation.

work addresses one of these techniques by applying a squash
and stretch effect to spheres and cylinders in object space
prior to ray-tracing °. Strothotte et al 7, after Hsu er al 8,
also identify depiction of motion as important, though the
former are concerned primarily with the effect of motion
cues on temporal perception. In both studies streak lines are
generated via user-interactive processes. Earlier work by the
authors renders motion within an image sequence by com-
posing salient features to produce paintings reminiscent of
Cubist art °.

Animators have evolved various ways of emphasising
characteristics of a moving object (Figure 1). Streak lines
are commonly used to emphasise motion, and typically fol-
low the movement of the tip of the object through space. The
artist can use additional ’ghosting’ lines which indicate the
trailing edge of the object as it moves along the streak lines.
Ghosting lines are usually perpendicular to streak lines. De-
formation is often used to emphasise motion, and a popular
technique is squash and stretch in which a body is stretched
tangential to its trajectory, whilst conserving area 3. Other
deformations can be used to emphasise an object’s inertia;
a golf club or pendulum may bend along the shaft to show
the end is heavy and the accelerating force is having trou-
ble moving it. The magnitude of deformation is a function
of motion parameters such as tangential speed, and of the
modelled rigidity of the object. In this paper we process real
video to introduce these motion cues; examples are given in
Figure 1.

An attempt to automatically render motion cues presents
the following challenges:

1. Motion cues tend to emphasise fast, large-scale feature
motions, the filming of which often requires the cam-
era to move. Features may also become occluded during
motion. How shall we track features through a video se-
quence in these circumstances, and what constraints must
we impose to make the tracking problem tractable?

2. How will motion cues be generated and attached to
tracked features? How will such cues adapt to variations
in velocity and acceleration? How will motion cues be
embedded coherently in the existing image sequence?

3. How can we render the final scene to produce coherent
artistic shading styles?

The first point falls within the bounds of Computer Vision,
the latter two are primarily Computer Graphics issues.

The remainder of the paper is organised as follows. In
Section 2 we give an overview of the system. In Section 3
we discuss the vision algorithms for camera motion correc-
tion and tracking. In Section 4 we describe the algorithms
for generating motion cues and inserting them into video.
We conclude in Section 5 with a discussion of future work.

2. Overview of the system

We now describe the major components of the system, leav-
ing detailed explanation to subsequent sections of the pa-
per. The system has two major components: the Computer
Vision component which is responsible for tracking motion
of features (e.g. arm, leg, bat or ball), camera motion com-
pensation, and depth ordering of features; and the Computer
Graphics component, responsible for the generation of mo-
tion cues, and their rendering at the correct depth. We wish
for minimal user interaction with the Computer Vision com-
ponent, which must be robust and general; currently users
draw polygons in a single frame to identify features which
are then tracked automatically. In contrast, the user is given
control over the graphics component via a set of parameters
which influence the style in which the motion cues are syn-
thesised.

3. The Computer Vision component

The Computer Vision component is responsible for the
tracking of features over the video sequence. A camera mo-
tion compensated version of the sequence is first generated,
thereby ensuring that camera motion does not influence the
observed trajectories. Features are then tracked over the se-
quence using standard techniques. By analysing occlusion
during tracking we determine a relative depth ordering of
features, later used in the rendering stage to insert motion
cues at the correct scene depth.

We compensate for camera motion using a robust motion
estimation technique initially proposed by Torr 0. Harris in-
terest points ! are identified in adjacent video frames, and
RANSAC 2 used to produce an initial estimate of the ho-
mography between frames. This estimate is then refined us-
ing a Levenburg-Marquadt iterative search '3. Frames are

(© The Eurographics Association 2003.

J. P. Collomosse, D. Rowntree and P. M. Hall / Cartoon-style Rendering of Motion from Video 119

Figure 2: Left: The camera compensated VOLLEY sequence sampled at regular time intervals. The camera viewport at each
instant is outlined in yellow, the tracked feature in blue. Right: STAIRS sequence. (Top) markers are required to track this
more complex subject but are later removed automatically (middle). Recovery of relative depth ordering permits compositing
of features in the correct order (bottom); labels A—K correspond to the graph of Figure 3.

projected via their homographies to produce a motion com-
pensated sequence in which the tracking of features is sub-
sequently performed.

3.1. Tracking features over the compensated sequence

The general problem of tracking remains unsolved in Com-
puter Vision and, like others, we now introduce constraints
on the source video in order to make the problem tractable.
Users identify features by drawing polygons, which are
“shrink wrapped” to the feature’s edge contour 4. We as-
sume contour motion may be modelled by a linear confor-
mal affine transform (LCAT) in the image plane, which has
4 parameters (scale, orientation, and spatial position). Vari-
ation of these parameters is assumed to well approximate a
second order motion equation over short time intervals.

The LCAT is a degenerate form of the affine transform
consisting of a uniform scale s, orientation 0, and a transla-
tion (u, v)T. In homogeneous coordinates we have a product
of matrices:

M(s,6,u,v) = T(u,)R(8)S(s) M

A feature, F', comprises a set of points whose position varies
in time; we denote a point in the rth frame by the column
vector x, = (x,y),T. In general these points are not pixel lo-
cations, and so we use bilinear interpolation to associate a
colour value, I(x,) with the point. The colour value com-
prises the hue and saturation components of the HSV colour
model; we wish to ignore variations in luminance to mitigate
against errors introduced by lighting changes. Although the
LCAT can be derived from two point correspondences we
wish to be resilient to outliers, and therefore seek the LCAT
1\4[, which minimises E[.]:

||

1 i i
EM,] = g ; () —1(M,,,) 2)

(© The Eurographics Association 2003.

where the 7/ subscript denotes the matrix transform from
frame ¢ to t'. In a similar manner to camera motion cor-
rection, the transformation M, is initially estimated by
RANSAG, and then refined by Levenburg-Marquadt search.

By default, several well distributed interest points are
identified automatically using the Harris ' detector (see se-
quences CRICKET, METRONOME). In some cases a dis-
tinctively coloured feature itself may be used as a marker
(see VOLLEY, Figure 2). In more complex cases where point
correspondences for tracking can not be found (perhaps due
to signal flatness, small feature area, or similarity between
closely neighbouring features), distinctively coloured mark-
ers may be physically attached to the subject and later re-
moved digitally (see STAIRS, Figure 2). In these cases the
Harris interest points are substituted for points generated by
analysis of the colour distribution in a frame.

So far we have overlooked noise and occlusion. The ‘best’
gﬂ, will be meaningless in the case of total occlusion, and
exact in the case of no noise or occlusion. The likelihood L,
of the feature being occluded at any time # may be written as
a function of detected pixel error:

L= exp(—lE[%ﬂ]) 3)

where A is the reciprocal of the average time an object is un-
occluded. At any time ¢ we know the estimated LCAT A:/It e
and the confidence in that estimate C; = 1 — L; which we pass
through a Kalman filter to obtain our best estimate value for
the LCAT. The state transition matrix in the filter represents
a second order motion equation in the 4D parameter space of
the LCAT, trained over the immediate history of contour mo-
tion. In the case Cr = 0 results will be predicted entirely by
this second order motion equation, in case C; > 0 the mea-
sured LCAT holds greater influence over the predicted mo-
tion. We may threshold C; at 0.5 to make a binary decision
as to whether, at a given frame, a feature is occluded or not
(see Section 3.2).

120 J. P. Collomosse, D. Rowntree and P. M. Hall / Cartoon-style Rendering of Motion from Video

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

Figure 3: An occlusion graph constructed over 150 frames
of the STAIRS sequence, node letters correspond with Fig-
ure 2. Dotted lines indicate unoccluded nodes.

The ability of the algorithm to re-establish tracking fol-
lowing occlusion has been found sufficiently robust for our
needs, providing occluded motion approximately follows the
second order model estimated by the Kalman filter. However
the predicted LCAT during occlusion is often inaccurate. We
refine the tracked motion by deciding at which time intervals
a feature is occluded and interpolating between the param-
eters of known LCATs immediately before and after occlu-
sion. Knowledge of the correct positions of features during
occlusion is important when rendering as although a feature
may not be visible, any attached motion cues may be. Oc-
clusion is also used to determine relative feature depth.

3.2. Recovering relative depth ordering of features

We now determine a partial depth ordering for tracked fea-
tures, based on their mutual occlusion over time. The ob-
jective is to assign an integer value to each feature corre-
sponding to its relative depth from the camera. We introduce
additional assumptions at this stage: 1) the physical order-
ing of tracked features cannot change over time (potential
relaxation of this assumption is discussed in Section 5) ; 2)
a tracked feature can not be both in front and behind another
tracked feature; 3) lengthly spells of occlusion occur due to
tracked features inter-occluding.

For each instance of feature occlusion we determine
which interest points were occluded by computing a differ-
ence image between tracked and original feature bitmaps.
A containment test is performed to determine if occluded
points lie with the bounding contour of any other tracked
features; if this is true for exactly one feature, then the oc-
clusion was caused by that feature. We represent these inter-
feature relationships as a directed graph, which we con-
struct by gathering evidence for occlusion over the whole
sequence. Formally we have a graph of nodes G_j, corre-
sponding uniquely with the set of tracked features, where
G; — G; implies that feature G; occludes G; (Figure 3).
Each graph edge is assigned a weight; a count of how many
times the respective occlusion is detected.

This graph has several important properties. First, the
graph should be acyclic since cycles represent planar con-
figurations which cannot occur unless our previous assump-

tions are violated or, rarely, noise has cause false occlusion.
Second, groups of polygons may not interact via occlusion,
thus the resulting graph may not be connected (a forest).
Third, at least one ‘unoccluded node’ G, must exist per con-
nected graph such that VG;—_,—3G; — Gn.

First we verify that the graph is indeed acyclic. If not, cy-
cles are broken by removing the cycle’s edge of least weight.
This removes sporadic occlusions which can appear due to
noise. We now assign an integer depth code to each node
in the graph; smaller values represent features closer to the
camera. The value assigned to a particular node corresponds
to the maximum of the hop count of the longest path from
any unoccluded node to that node (Figure 3). By defini-
tion features within disconnected graphs do not occlude each
other, thus it is not possible to determine a consistent order-
ing over all connected graphs using occlusion alone. How-
ever since this data is required later only to composit fea-
tures in the correct order, such consistency is superfluous to
our needs.

4. The Computer Graphics component

The graphics component composits cels to create each frame
of the animation. Each feature has two cels associated with
it, one for augmentation cues such as streak lines, the other
for deformation cues such as squash and stretch. The cels are
composited according to the depth ordering of features, from
the furthest to the nearest; for a given feature, deformation
cels are always in front of augmentation cels.

4.1. Motion cues by augmentation

Augmentation cues such as streak lines and ghosting, are
common in traditional animation (Figure 1). Streak lines
can be produced on a per frame basis by attaching lines to
a feature’s trailing edge, tangential to the direction of mo-
tion 8. Such an approach is only suitable for visualising in-
stantaneous motion, and produces only straight streak lines.
In contrast animators tend to sketch elegant, long curved
streaks which emphasise motion historically. For the same
reasons, optical flow cannot be used to create streak lines.

Streak line placement is a non-trivial problem: they are
not point trajectories, features tend to move in a piecewise-
smooth fashion, and we must carefully place streak lines
on features. To produce streak lines we generate correspon-
dence trails over the trailing edge of a feature as it moves,
we then segment trails into smooth sections, which we filter
to maximise some objective criteria. We finally render the
chosen sections in an artistic style.

We sample the feature boundary at regular intervals, iden-
tifying a point as being on the trailing edge if the dot product
of its motion vector with the external normal to the bound-
ary is negative. Establishing correspondence between trail-
ing edges is difficult because point ordering can vary from

(© The Eurographics Association 2003.

J. P. Collomosse, D. Rowntree and P. M. Hall / Cartoon-style Rendering of Motion from Video 121

Figure 4: A selection from the gamut of streak and ghosting line styles available: Ghosting lines may be densely sampled to
emulate motion blur effects (b,c,f) or more sparsely for traditional ghosting (a,d). The feature itself may be ghosted, rather than
the trailing edge, to produce Futurist-like echos (e,g). Varying the overlap constant w influences spacing of streak lines (b,f).
The decay parameters of streak and ghosting lines may be set independently (a).

frame to frame, as well as shape (and even connectivity). The
full LCAT determined during tracking cannot be used, as
this establishes point trajectories (which we have observed
are not streak lines); we wish to establish correspondence
between feature silhouettes.

We establish correspondence trails by computing the in-
stantaneous tangential velocity of a feature’s centroid u. A
translation and rotation is computed to map the normalised
motion vector from u at time ¢ to time ¢’. Any scaling of the
feature is performed using the scale parameter of the LCAT
determined during tracking. Points on the trailing edge at
time ¢t are now translated, rotated and scaled. Correspon-
dence is established between these transformed points at
time 7, and their nearest neighbours at time ¢', this forms
an link in a correspondence trail. This method gives inde-
pendence on point ordering, and allows the geometry of the
trailing edge to vary over time, as required.

Animators tend to draw streak lines over smooth sections
of motion. Therefore the correspondence trails are now seg-
mented into smooth sections, delimited by sharp changes in
trajectory. Such motion is usually caused by rapid transla-
tional, rotary or projectile motion in a scene, resulting in
simple linear or curved trajectories. We have therefore cho-
sen to model these trajectories using a subset of conics; ellip-
tic curve fragments, parabolic curve fragments (which per-
mit linear forms as a degeneracy).

We use a greedy algorithm to fit curves: (1) begin at the
start of the correspondence trail; (2) iterate forward captur-
ing points and fitting elliptical !> and parabolic curves along
the way using least-squares; (3) when no curve fits suffi-
ciently well (below a threshold), or average velocity falls
too low, the smooth section is terminated and the best fitting
curve used as a model for that section.

We fit piecewise smooth models to every correspondence
trail, as just described. This results in a set of smooth sec-

(© The Eurographics Association 2003.

tions, each with a pair of attributes: 1) a function G(s) where
s is an arclength parameterisation of the spatial trajectory of
the fitted curve s = [0,1]; 2) a lookup table g(.) mapping
from an absolute time index ¢ to the arclength parameter, i.e.
s = g(t), thus recording velocity along the spatial path G(s).
The inverse lookup function g'(.) is also available. Clearly
the curve exists only for a specific time period [¢' (0),g'(1)];
we call this interval the duration of the curve.

The association between each smooth section and its data
points is maintained. These data points are used to filter the
set of smooth sections to produce a subset ¢ of managable
size, which contains optimal paths along which streak lines
will be drawn.

Our filtering selects curves based on heuristics derived
from the practice of traditional animators who favour place-
ment of streak lines on sites of high curvature and on a fea-
ture’s convex hull. Long streak lines and streak lines asso-
ciated with rapid motion are also preferred, but close prox-
imity to other co-existing streak lines is discouraged. We se-
lect streak line curves, on each iteration i adding a new ele-
ment to ¢ (initially empty) to maximise the recursive func-
tion H(.)

0
H(i)+ (owv(x)+ BL(x) —
¥D(x) — dw(x,0;w) +{p(x)) 4)

where x is the set of points associated with a smooth section.
L(x) is the length of a smooth section, v(x) is the “mean ve-
locity” defined as L(x)/t(x) in which #(x) is the duration of
x. p(x) is the mean curvature of feature boundary at points in
x. D(x) is the mean shortest distance of points in x from the
convex hull of the feature. ®(x, 5; w) measures the maximal
spatio-temporal overlap between x and the set of streak lines
chosen on previous iterations. From each curve we choose
points which co-exist in time, and plot the curves with width

H(0)
H(i+1)

122 J. P. Collomosse, D. Rowntree and P. M. Hall / Cartoon-style Rendering of Motion from Video

w returning the intersected area. Constant w is user defined,
as are the constant weights o, ,v,d, and ; these give artis-
tic control over the streak line placement (see Figure 4). It-
eration stops when the additive measure falls below a lower
bound.

We are now in a position to synthesise two common forms
of augmentation cue; streak lines and ghosting lines — both
of which are spatio-temporal in nature. A streak line is made
visible at some absolute time ¢ and exists for a duration
of time A. The streak line is rendered by drawing a se-
quence of discs along the smooth section with which it is
associated, starting at spatial location G(g(¢)) and ending at
G(g(argmax(g'(0),t — A))). The streak line is rendered by
sweeping a translucent disc along the smooth section (back-
wards in time) which grows smaller and more transparent
over time. These decays are under user control. Secondary
streak lines may be generated at small spatio-temporal off-
sets to produce sketchy or turbulent effects.

Ghosting lines depict the position of a feature’s trailing
edge along the path of the streak line, and are useful in visu-
alising velocity changes over the course of the streak. Ghost-
ing lines are rendered by sampling the trailing edge at regular
time intervals as the streak line is rendered, interpolating if
required. The opacity of ghosting lines is not only a function
of time (as with streak lines) but also a function speed rel-
ative to other points on the trailing edge; this ensures only
fast moving regions of edge are ghosted. Users may control
the sampling rate, line thickness, and decay parameters to
stylise the appearence of the ghosting lines (Figure 4).

4.2. Motion cues by deformation

Our framework offers the facility to emulate effects such as
‘squash and stretch’, or to suggest inertia or drag through
deformation. Features are cut from the current video frame,
and motion dependent warping functions applied to render
the deformation cue cel for each feature.

point trajectories are
not streak lines....

..it’s preferable to correspond
_ trailing edges

sjectories of corresponding
trailing points are segmented
to make smooth sections.

the smooth sections are filtered
50 that streak lines can be
drawn..

..and a curvilinear-basis
system erected for warping

Q
carine CFH D

is drawn by

sweeping a translucent disc warping, quash and stretch

along a smooth section stretches along the direction of the
smooth sections, so the final object
can bend.

Figure 5: Summarising the generation of motion cues.

Deformations are performed by forming a curvilinear
space, the basis of which is defined by the local trajectory
of the feature centroid, and lines normal to this curve; this
trajectory has exactly the same properties as any smooth sec-
tion. Two parameters s and r are use to locate a spatial point,
x = G.(s)+ rn(s), where n(s) is the unit normal to centroid
trajectory G.(.), at s. This curvilinear space is translated
in so that its origin is coincident with the feature centroid.
Whilst these bases may not exactly coincide with correspon-
dance trails, they form a close approximation sufficient for
our purposes.

For convenience we denote the transform from parame-
ter space r = (s,r) to rectilinear space by x = U(r). The
inverse transform r = U ~!(x) is maintained in a look-up ta-
ble.

The squash and stretch effect conserves area whilst
stretching the object in the direction tangential to motion.
The complete transformation may be expressed as:

y—U(H ﬁk’ }U_l(z)))

where k varies eccentricity of the squash and stretch effect as
a function of tangential speed |al and user specified constants
Vinin and Vinax:

K 241
k = l—l—z(l—cos(nv s)
0if |E| < Vinin
v = Lif |gt] >= Vinax (6)

(l:ul :Vmin)/(vmax — Vmin) otherwise

User defined constants Viuax, Vinin define a velocity window
for the effect, whilst K limits the eccentricity of the squash
and stretch. Squash and stretch uses speed of the centroid
as the parameter to the warping function. More generally
we can form warping functions which depend on a point’s
local velocity and acceleration as well as its position. We
write X' = U(T (U™ (x),%,%)), where T is a functional used,
for example, to suggest increased drag or inertia. A typical
functional operates on each component of r = (ry,r) inde-
pendently, to create effects suggesting drag we use:

n o= n—FCaan(g)) signs) 0

where F is a function of suggested mass, and P influences
the apparent rigidity of the feature. By substituting accelera-
tion for velocity, and adding rather than subtracting from ry
we can emphasise inertia of the feature.

Finally, we ensure visual consistency by deforming not
only features, but also their associated augmentation cue cels
containing streak lines or ghost lines.

4.3. Rendering in the presence of occlusion

In any real video a tracked feature may become occluded
by other elements of the scene. Naively, all pixels inside the

(© The Eurographics Association 2003.

J. P. Collomosse, D. Rowntree and P. M. Hall / Cartoon-style Rendering of Motion from Video

Frame 40

_—
—

Frame 1

123

Ball release.

Tracked speed (pixels/sec)

Follow through

Voley 2 (not shown)

1 |b 20 30 40 50

Figure 6: Top left: Illustrating the squash and stretch effect; eccentricity varies as a function of tangential speed. Bottom:
Frames from the VOLLEY sequence exhibiting squash and stretch. Observe the system handles both large scale camera motion,
and lighting variation local to the ball. Frames from METRONOME suggesting drag and inertia effects through deformation,
original feature outline in green. Top right: Curvilinear space used to deform features in VOLLEY and METRONOME.

bounding contour of a feature will be included in that feature
and so are subject to deformation. Consequently, it is easy
to warp parts of occluding objects; we now explain how to
avoid such unwelcome artefacts.

We identify pixels as belonging to an occluding object
by forming a difference image (using the hue and saturation
components in HSV space) between the feature region in the
current frame and the feature itself. This yields a template of
occluding pixels which can be retextured by sampling from
feature regions in neighbouring unoccluded frames. The un-
occluded feature is thus reconstructed, and after deformation
occluding pixels may be recomposited to give the illusion of
the ball passing *behind’ occluding objects (Figure 7).

Similarly, augmentation cues should pass behind occlud-
ing objects. Fortunately these cues traverse an identical path
to that of the feature in prior frames. We construct an occlu-
sion buffer over time, summing the difference images gen-
erated whilst handling occlusion for deformation cues (Fig-
ure 7d). Using this buffer we may determine which pixels
will occlude the streak lines, so long as those pixels do not
change in the time interval between the feature passing and
the augmentation cues being drawn. The occlusion buffer
contains a difference image for occlusion and the RGB value
of each pixel. Pixels in the buffer are deleted when the differ-
ence between the stored colour for a pixel, and the measured
colour of that pixel at the current time is significant. In this
case the occluding pixel has moved, obsoleting our knowl-
edge of it. This algorithm works acceptably well over short
time intervals (Figure 7e).

(© The Eurographics Association 2003.

4.4. Compositing and Rendering

We generate a background for each video frame by sub-
tracting features from the original video; determining which
pixels in the original video constitute features by project-
ing tracked feature regions from the camera-compensated
sequence to the original viewpoint. Pixels contributing to
feature regions are deleted and absent background texture is
reprojected from locally neighbouring frames in alternation
until holes are filled with non-feature texture. This sampling
strategy mitigates against artefacts caused by local lighting
changes or movement.

Once augmentation and deformation cels have been ren-
dered for each feature, cels are composited to produce an
output video frame. Cels are projected by homography to
coincide with the original camera viewpoint, and compos-
ited onto the background in reverse depth order. Thus mo-
tion cues appear to be inserted into video at the correct scene
depth (Figure 7g). Additionally, temporally coherent NPR
shading effects may be generated by rigidly attaching strokes
or texture to each feature; strokes are subjected to the iden-
tical LCAT motion and deformations as their respective fea-
ture (Figure 7f).

5. Conclusion

We have described and demonstrated a system for the artistic
rendering of motion within video sequences. The system can
cope with a moving camera, lighting changes, and presence
of occlusion. Users may stylise both the placement and ap-
pearence of motion cues using the parameterised framework
described in Section 4. Novel effects may be produced by in-
terpolating between points in this parameter space, gradually
changing the appearance of motion cues over time.

124 J. P. Collomosse, D. Rowntree and P. M. Hall / Cartoon-style Rendering of Motion from Video

Figure 7: Above: three frames from BASKETBALL,
demonstrating occlusion handling. The system fails when the
netting moves erratically after impact, causing the buffer to
empty and streak lines to be drawn in front of the netting
(7e). Below left: A coherent cartoon effect created by apply-
ing Q-maps to cels '°; Below right: Streak lines are inserted
at the correct scene depth; cues attached to the far leg pass
behind the near leg.

Further developments could address the relaxation of
some of the assumptions made in the design of the sys-
tem. For example, violations of depth assumptions are de-
tectable by the presence of heavily weighted cycles in the
depth graph. It may be possible to segment video into a min-
imal number of chunks exhibiting non-cyclic depth graphs,
and in doing so recover relative feature depth under more
general motion. As regards rendering, we might extend the
possible gamut of motion cues; investigating whether addi-
tional techniques in Lasseter’s paper > such as anticipation,
can be rendered automatically.

We have shown that through high-level analysis of fea-
tures (examining motion over the entire video, rather than on
a per frame basis) we may produce motion cues closely ap-
proximating those used in traditional animation (Figure 1).
We believe the most productive avenues for future research
will not be in incremental refinements to the current sys-
tem, but rather will examine alternative uses for higher-level
spatio-temporal analysis of video with applications to NPR.

A selection of rendered video sequences are available on-
line at http://www.cs.bath.ac.uk/~vision/cartoon.

References

1. B. Meier, “Painterly rendering for animation”, in
Proceedings Computer Graphics (ACM SIGGRAPH),
pp. 447-484, (1996).

2.

10.

11.

12.

13.

14.

15.

16.

E. Daniels, “Deep canvas in disney’s tarzan”, in Pro-
ceedings Computer Graphics (ACM SIGGRAPH, Ab-
stracts and Applications), p. 200, (1999).

P. Litwinowicz, “Processing images and video for an
impressionist effect”, in Proceedings Computer Graph-
ics (ACM SIGGRAPH), pp. 407414, (1997).

A. Hertzmann and K. Perlin, “Painterly rendering for
video and interaction”, in Proceedings NPAR Sympo-
sium, pp. 7-12, (2000).

J. Lasseter, “Principles of traditional animation applied
to 3D computer animation”, in Proceedings Computer
Graphics (ACM SIGGRAPH), vol. 21, pp. 35-44, (July
1987).

S. Chenney, M. Pingel, R. Iverson, and M. Szymanski,
“Simulating cartoon style animation”, in Proceedings
NPAR Symposium, (2002).

T. Strothotte, B. Preim, A. Raab, J. Schumann, and
D. R. Forsey, “How to render frames and influence peo-
ple”, in Proceedings Computer Graphics Forum (Euro-
graphics), vol. 13, pp. C455-C466, (1994).

S.C.Hsuand I. H. H. Lee, “Drawing and animation us-
ing skeletal strokes”, in Proceedings Computer Graph-
ics (ACM SIGGRAPH), pp. 109-118, (1994).

J. P. Collomosse and P. M. Hall., “Cubist style render-
ing from photographs.” IEEE TVCG, in press.

P. H. S. Torr, Motion segmentation and outlier detec-
tion. PhD thesis, University of Oxford, (1995).

C. J. Harris and M. Stephens, “A combined corner and
edge detector”, in Proceedings 4th Alvey Vision Con-
ference, (Manchester), pp. 147-151, (1988).

M. A. Fischler and R. C. Bolles, “Random sample con-
sensus: A paradigm for model fitting with applications
to image analysis and automated cartography”, Com-
munications of the ACM, 24(6), pp. 381-395 (1981).

R. Szeliski, “Image mosaicing for tele-reality applica-
tions”, Tech. rep., Digital Equipment Corp., (1994).

D. Williams and M. Shah, “A fast algorithm for active
contours and curvature estimation”, CVGIP: Image Un-
derstanding, 55(1), pp. 14-26 (1992).

A. W. Fitzgibbon and R. B. Fisher, “A buyer’s guide
to conic fitting”, in Proceedings BMVC, (Birmingham),
(1995).

P. Hall, “Non-photorealistic rendering by Q—mapping”,
Computer Graphics Forum, 1(18), pp. 27-39 (1999).

(© The Eurographics Association 2003.

