
Vision, Video, and Graphics (2003)
P. Hall, P. Willis (Editors)

Quasi-3D Cel-based Animation

M. Qi and P. J. Willis

Department of Computer Science, University of Bath, Bath, UK

Abstract
We present a method for image compositing and rendering using 2D geometric shapes or raster images as input
primitives, disposed in a 3D environment around which the camera can move. An animation system has been
implemented which calculates camera and scene information to render the frames. The key features of this quasi-
3D system are described. Two animations generated by the system are given as examples.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Quasi-3D, Composing
and Rendering, Computer Animation

1. Introduction

Computer animation systems are typically 3D, mimicking
modelled animation such as claymation. These can offer
sophisticated lighting and rendering options but are also
compute-intensive. There are also some 2D systems, which
emulate hand-drawn cel animation. These naturally offer a
way of building the output image, layer by layer, but do not
take full advantage of image composition.

Lengyel and Snyder1presents an image composition sys-
tem based on Microsoft’s Talisman hardware architecture2.
As their main concern is speed rather than image quality,
image resolution is limited. Tic-Tac-Toon3 focuses on every
stage of the traditional animation process. With vector prim-
itives, no digitized data can be used as input. Some commer-
cial systems, such as Cambridge Animation Systems Animo
product, combine vector line drawing with 3D models.

We have explored a different approach to this 2D/3D area.
We have built a system which uses 2D pictures, located on
cels (2D planes) which can be disposed anywhere in 3D
space. In other words, we have replaced the traditional stack
of cels found in a 2D system with one in which cels become
modelling elements in a 3D world. The camera can move
around this world, giving the same freedom of view as a full
3D system. This permits us to build 3D-like worlds, with-
out the need for full 3D modelling. To be effective, the sys-
tem must treat the cels as input images, which are to be ma-
nipulated and then rendered to an output picture. The tech-
nology to do this thus sits between pure synthetic graphics

(where pictures are only output elements) and image pro-
cessing (where they are input elements). We call this ap-
proach “Quasi-3D”.

The animation system described here builds on our pre-
vious work4. Quasi-3D is a 2D cel-based compositing and
rendering method using either 2D geometric shapes or raster
images as input primitives. The method can deal with cel in-
tersections, so there is complete freedom of cel placement.
The output resolution is independently set and, by using a
scanline renderer, there is no need to build the image with a
conventional frame and z-buffer. Only a scanline is rendered
at any given time, reducing memory requirements. Indeed,
the output image can be generated directly into a compressed
file. High resolution images are thus possible with modest
computer resources.

To implement a movie sequence with Quasi-3D, a script
file is used to describe the animation. A user can easily
manipulate the script by specifying camera, cels, lighting
and the paths objects take. The system generates animation
frames by calculating the current parameters of the camera
and cels, which are then rendered by the quasi-3D method.

The paper is organized as follows. Section 2 introduces
the Quasi-3D model and its implementation principles. Sec-
tion 3 describes the Quasi-3D animation script used to gen-
erate multiple frames for an animation and the implemen-
tation of the animation system. Section 4 provides two ani-
mations generated from the Quasi-3D animation system and
Section 5 concludes the paper.

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

112 Qi and Willis / Quasi-3D Cel-based Animation

2. The Quasi-3D Model and Rendering

Quasi-3D is a method for animation, composing and ren-
dering using either 2D geometric shapes or raster images as
input primitives. It unifies the representation of both movie-
quality digital pictures and graphically modelled 2D objects,
so that both can be rendered within the same image. The
primitives are organized in layers called ‘cels’. Quasi-3D
also has basic 3D features such as lighting, perspective pro-
jection and 3D movement. A notable feature of Quasi-3D is
that it handles hidden-surface elimination (cel intersection)
when rendering cels, rather than the simpler layered model
of 2D systems. The visible areas of a cel are determined ac-
cording to its position in a 3D space.

Other effects with Quasi-3D include defocusing, trans-
parency, anti-aliasing, Boolean operations and transforma-
tions of primitives. In Quasi-3D, the resolution of the fi-
nal image is virtually unlimited. As no intermediate frame
buffer is used, performance is much less dependent on res-
olution than with standard programs. This allows rendering
very large images in a reasonable time. The Quasi-3D model
is described in detail below.

2.1. The Quasi-3D Model

An example is used to explain the Quasi-3D model. Figure 1
shows a 3D scene made from four cels: three walls and one
panda painting. The cels with 3D location are used for a par-
ticular frame and they are stacked on a rostrum as shown in
figure 2 which has a camera, the cels and lights.

Figure 1: A Quasi-3D scene using four cels.

Quasi-3D allows programmers to create virtual stacks of
cels as shown in figure 3. The 2D graphics primitives can be
transformed and combined using Boolean operators. Light-
ing can be controlled better than in a real rostrum. Each cel
in the stack can have different front and back lights, instead
of using a single pair of lights for the stack (see figure 2).

By using the Bath Colour Model5 we are able to handle
transparency and lighting better than with the common alpha
channel model.

At each stage of the primitive/object/cel hierarchy, a ho-
mogeneous transformation matrix is specified to provide

Figure 2: A rostrum.

boolean

Stack

celn

cel2

cel1

Location
3D

brightness
focus
light

object2

object1

operation
transformation
geometric

primitive4

primitive3

primitive2

primitive1

Figure 3: The stack structure.

standard operations such as translations, scales, and rota-
tions. In the primitive/object level, the transformation is in
2D and a 3×3 matrix is needed. In the cel level, a 4×4 homo-
geneous matrix is required for full 3D transformation. More
specific operations can be specified at the cel level (e.g. de-
focus) or at the stack level (e.g. brightness).

A centre of projection and a viewport are used to simu-
late the 3D placement of the camera. These values can be
animated which, in conjunction with the multiple layering,
permits panning, zooming and parallax operations.

• Primitives

A primitive is generally defined as a closed region in a
2D space. Rectangles, triangles, circles give simple shapes.
Closed NURBS curves provide a general shape. A graphical
object can be composed from primitives as shown in figure 3,
or from other graphical objects.

• Textures

Each primitive has a texture used to store its colour, inde-
pendent lighting and other objects. Currently a texture can
be one of the following three types:
flat_colour:a single colour is specified for all the points in-
side the primitive.
gradient: a triangle (containing the primitive) is specified,

c© The Eurographics Association 2003.

Qi and Willis / Quasi-3D Cel-based Animation 113

as well as the colour of each of its vertices. The colour of
a point inside the primitive is then determined by the linear
interpolation of these colours.
picture: a raster image is mapped to the primitive’s bound-
ing rectangle. This texture type is used to produce digitized
images in the composition process.

2.2. Quasi-3D Rendering

Once the above stack structure has been created and the
view-related parameters (such as lights and viewport) have
been specified, rendering can be performed. Rendering a
stack structure is equivalent to shooting a real stack on film:
a raster image is computed and then output to one of the
available raster devices such as a screen, a film recorder, or
an image file.

One of the features of Quasi-3D is handling intersecting
cels with arbitrary location and direction in 3D space. To
realize perspective projection, 3D space transformations for
cels are needed. To eliminate hidden surfaces, cel order is
required at each pixel, as shown in figure 4.

2

[0 499]300] [301

2 in front of 1 1 in front of 2

1

Figure 4: Cel ordering along a scan-line.

Rendering and composition are performed scan-line by
scan-line. The rendering computes the intersection of prim-
itives with the scan-line and generates a list of colour-
coherent spans, which can be single colour, gradient colour
or array colour. The composition merges the results from the
rendering. The resulting list of spans is finally converted to
pixels.

Below is an overview of the rendering process:

• Initialization for rendering, including calculating of prim-
itives’ 3D global transformation and computing each cel’s
supporting plane equation.

• For each scan-line

– Compute cel order spans for the scan-line. This de-
termines the cel visibility changes along the scan-line
(i.e. whether a cel that was in front of another cel
“moves“ behind somewhere on the scan-line). The cel
order information is stored in a list of spans with the

corresponding orders. In figure 4, the list will be in the
form of: span 1 [0 to 300] order:(1,2), span 2 [301 to
499] order:(2,1).

– Compute cel colour spans for the scan-line.
– For each cel order span, composite cels in the corre-

sponding order.

In Quasi-3D rendering, antialiasing is performed by
super-sampling and filtering. The user may supply any digi-
tal filter, though box and Gaussian functions are built-in. For
details about our compositing and filtering see Froumentin4.

For Quasi-3D, no frame buffer is required as scan-line
based computing allows images to be rendered with almost
no limit on resolution or aspect ratio. Moreover, because ren-
dering and composition are combined together, there is no
need to store rendered components for later composition,
saving on both time and storage. Furthermore, Quasi-3D
only renders the part of a cel which is within the viewport.
This avoids unnecessary computation of hidden objects and
thereby improves the overall rendering speed.

3. Quasi-3D Animation

What we have described so far relates to producing a sin-
gle frame. In order to produce a movie sequence, we need to
be able to choreograph the movements of the cels, the move-
ment of the camera and the variation in the lighting. We have
implemented a scripting system for this.

3.1. An Animation Script

The animation script file provides controls over graphical
objects, virtual cameras and light resources. The script is or-
ganized in a structured, consistent and succinct way to facil-
itate an animator intuitively specifying an animation. Fig-
ure 5 shows a sample. There are five parts in the script,
SCENE, PATH, CAMERA, LIGHT and SCRIPT. Each part
is described below.

• SCENE

The scene of a Quasi-3D animation is composed from 2D
cels. The SCENE in the script shows the cel names used to
render frames for an animation.

• PATH

In a Quasi-3D animation, both camera and cel can move
from one position to another position in a 3D space, with
or without direction changes, defined by a PATH. A PATH
in the script specifies the starting location and the ending lo-
cation of camera or a cel. In the sample script, there are three
paths, P1, P2 and P3.

• CAMERA

A CAMERA in the script specifies a camera’s zoom setting
(focal length) and focus setting. These can vary from frame
to frame so there are starting and ending values in each case.
There are two cameras in the sample script, C1 and C2.

c© The Eurographics Association 2003.

114 Qi and Willis / Quasi-3D Cel-based Animation

(fr2e,fg2e,fb2e)(br2e,bg2e,bb2e)

}

SCENE cel1 cel2

camera 1~60 P2 C1
cel2 5~10 P3 L2

cel1 1~200 P1 L1 IN 20 OUT 20
SCRIPT
}

{

}

CL2s,CF2s

C2

{

(Px2s, Py2s, Pz2s)(Dx2s, Dy2s, Dz2s)Up2s

(Px3e, Py3e, Pz3e)(Dx3e, Dy3e, Dz3e)Up3e

{

}

}

(Px1s, Py1s, Pz1s)(Dx1s, Dy1s, Dz1s)Up1s

P1
PATH

camera 61~200 P2 C2

(fr1s,fg1s,fb1s)(br1s,bg1s,bb1s)

L1
LIGHT

CL2e,CF2e

C1

}

(Px3s, Py3s, Pz3s)(Dx3s, Dy3s, Dz3s)Up3s

P3

(Px2e, Py2e, Pz2e)(Dx2e, Dy2e, Dz2e)Up2e

{

(Px1e, Py1e, Pz1e)(Dx1e, Dy1e, Dz1e)Up1e

{

P2

CAMERA

CL1e,CF1e
CL1s,CF1s

{

(fr1e,fg1e,fb1e)(br1e,bg1e,bb1e)
}
L2
{
(fr2s,fg2s,fb2s)(br2s,bg2s,bb2s)

Figure 5: A Quasi-3D animation script sample.

• LIGHT

Cel lighting can be changed during an animation. The
LIGHT defines the alteration of a cel’s front and back lights,
represented as (r,g,b). L1 and L2 are two lights in the sample
script.

• SCRIPT

The SCRIPT defines all the events during the animation. The
events are described in the format:

<actor><startframe∼endframe><variations>

The actor can be a camera or a cel. Thestartframeand
endframeare the indices of the first and last frame to which
this action applies.Thevariationsdefine the changes within
the range of the frames and the method of interpolation can
be linear or slowin/slowout. As an example, consider the line
"camera 1∼60 P2 C1" in the sample script. This line spec-

ifies that a camera acts from frame 1 to frame 60 with path
defined in path P2 and camera parameters defined in C1.
"cel1 1∼200 P1 L1 IN 20 OUT 20" means that cel1 acts
from frame 1 to frame 200 with path P1 and lighting L1.
The slowin/slowout interpolation method is applied to the
starting 20 frames and the ending 20 frames respectively.

3.2. Animation Implementation

Using the above script file, the Quasi-3D animation system
generates a stack for each frame using the current cels and
cameras. The calculation of a stack involves the in-between
interpolation and the transformations of cels into the cam-
era coordinate system. The approach used to implement
slowin/slowout is parabolic interpolation (constant acceler-
ation) 6. Once the current frame stack is generated, then a
frame can be rendered. Figure 6 shows the Quasi-3D anima-
tion generation dataflow.

Next frame

Read and parse an animation file

N

Y

Begin

Calculate cels and camera related
parameters for current frame

Create a stack using current

frame information

Quasi−3D
Renders the stack and saves as a tga file

End of animation?

End

Figure 6: Quasi-3D animation dataflow.

4. Animation Applications

Computer animations have been widely used in advertising,
film special effects and many VR applications. The Quasi-
3D animation system can be used to generate animations for
the movements of scenes (cel transformations) and camera.
In addition, some effects can be achieved by adjusting the
camera’s focal length, focus and the cel’s lighting. We can
also generate a ’look at’ animation effect by defining two

c© The Eurographics Association 2003.

Qi and Willis / Quasi-3D Cel-based Animation 115

paths for the camera and the cel in which the starting/ending
direction vector in the camera path is the same as the start-
ing/ending position vector in the cel path.

Two animations generated by the Quasi-3D animation
system are described below.

4.1. Walking Around Animation

In this first example, we simulate the effect of walking past
a garden scene, constructed to demonstrate a parallax ef-
fect. The scene includes four cels: background trees, grass-
covered ground, a modern stone sculpture and a classical
statue. During the animation, the cels are fixed in the 3D
space and the viewer (viewpoint) moves to the left while
looking into the scene. The script for the animation is given
in appendix A. The animation involves 180 frames of which
four frames are shown in figure 7.

Figure 7: Four frames in the garden walking around anima-
tion.

The animation shows how the view changes during a
walking around. The four frames show the co-locations be-
tween the objects and the transparent backgrounds of the
sculpture and statue cels. All four cels remain correctly
"locked" in 3D position as this proceeds.

4.2. Dynamic Scene Animation

In addition to changing a viewpoint in an animation, we
can also change the scene dynamically. To illustrate this,
we modelled an object flying towards the camera over a
fixed scenic background. In figure 8, a balloon flies above
a lake area and approaches the viewer. At the same time the
background becomes darker. This is done by specifying the
movement of the cel containing the balloon and adjusting
the lighting. The animation includes only two cels, one for
the background and one for the balloon. The script for the

animation is given in appendix B. The balloon animation in-
volves 150 frames of which four frames are shown.

Figure 8: Four frames in the balloon animation.

5. Conclusions

In this paper, a Quasi-3D animation system is described.
The system consists of an image-based rendering component
coupled to a script-based animation component.

Using the system, various 3D effects, lighting and trans-
parency effects can be realized. Quasi-3D is able to ren-
der very-high resolution frames by virtue of its scanline ap-
proach. The animation script is used to define actors and the
timing of events. For simple scenes, the script is manipu-
lated directly. For more complex scenes it would be easy
to generate automatically from a front-end application. The
two sample animations generated from the system show the
simplicity of the Quasi-3D method. A wide range of other
operations is supported.

However, there is still some work to be done to improve
the Quasi-3D animation system. For instance, any other 2D
primitive can be added by providing a procedure for render-
ing the intersection of that primitive and a scan-line. We have
work in hand to include continuous interpolated images7. In
the animation script, the interpolation method can be im-
proved to offer other forms of interpolation.

Acknowledgements

The Quasi-3D animation system is built on earlier work at
MTRC, by previous research staff Max Froumentin, Fred-
eric Labrosse and Sam Laidler. The authors would like to
thank them for their contributions. We also thank Dan Su for
discussions on the system implementation. We are grateful
to the UK EPSRC for funding the Quasi-3D project which
employs Dr Qi.

c© The Eurographics Association 2003.

116 Qi and Willis / Quasi-3D Cel-based Animation

References

1. J. Lengyel and J. Snyder. Rendering with coherent lay-
ers. ACM Computer Graphics (Proc. of SIGGRAPH
’97), pp. 233–242, 1997.

2. Jay Torborg and James T. Kajiya. Talisman: Commod-
ity realtime3D graphics for the PC.ACM Computer
Graphics (Proc. of SIGGRAPH ’96), pp. 353–363,
1996.

3. Jean-Daniel Fekete, Érick Bizouarn, Éric Cournarie,
Thierry Galas, and Frédéric Taillefer. TicTacToon: A
paperless system for professional 2-D animation.ACM
Computer Graphics (Proc. of SIGGRAPH ’95), pp. 79–
90, 1995.

4. M. Froumentin, P.J. Willis. An efficient 2.5D rendering
and compositing system.Computer Graphics Forum
(Eurographics’99 Proc.), pp. C385–C394, 1999.

5. Robert J. Oddy and Philip J. Willis. A physically based
colour model. Computer Graphics Forum, 10(2):121-
127, June 1991.

6. Richard Parent. Computer Animation:Algorithms and
Techniques. Morgan Kaufmann Publishers, 2001.

7. Dan Su and Philip J. Willis. Demosaicing of colour
images using pixel level data-dependent triangulation.
acceptted for publication inEG UK 2003.

• Appendix A

SCENE grassland,backgroundtrees,stone,statue
PATH
P1
{
(0,0,-1)(0,0,1)0
(-1.5,0,-1)(0,0,1)0
}
P2
{
(0,-1,1.9)(0,-1,0)0
(0,-1,1.9)(0,-1,0)0
}
P3
{
(0,0,8)(0,0,1)0
(0,0,8)(0,0,1)0
}
P4
{
(0,-0.4,2)(0,0,1)0
(0,-0.4,2)(0,0,1)0
}
P5
{
(-1.5,-0.4,1)(0,0,1)0

(-1.5,-0.4,1)(0,0,1)0
}
CAMERA
C1
{
1,0
1,0
}
LIGHT
L1
{
(1,1,1)(0,0,0)
(1,1,1)(0,0,0)
}
SCRIPT
camera 1∼180 P1 C1
grassland 1∼180 P2 L1
backgroundtrees 1∼180 P3 L1
stone 1∼180 P4 L1
statue 1∼180 P5 L1

• Appendix B

SCENE lake,balloon
PATH
P1
{
(0,0,-1)(0,0,1)0
(0,0,-1)(0,0,1)0
}
P2
{
(0,0,12)(0,0,-1)0
(0,0,12)(0,0,-1)0
}
P3
{
(0,5,11)(0,0,-1)0
(0,1,5)(0,0,-1)0
}
CAMERA
C1
{
1,0
1,0
}
LIGHT
L1
{
(1,1,1)(0,0,0)
(0.5,0.5,0.5)(0,0,0)
}
SCRIPT
camera 1∼150 P1 C1
lake 1∼150 P2 L1
balloon 1∼150 P3 L1

c© The Eurographics Association 2003.

