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Abstract
It is evident that more and more video data is being generated everyday, for example, by TV broadcast companies
and security cameras. However, whilst we are overwhelmed by the huge amount of imagery data, machine vision
is generally not yet ready to replace us in most of the everyday visual tasks. In this paper we present a novel
approach to the handling of video data. We propose to employ volume visualisation techniques for “summarising”
video sequences, and to render video volumes into appropriate visual representations. Such visualisations can
be used to assist in a decision making process, for instance, to determine if there is any unusual level of activity
recorded in a video. In the paper, we present a prototype system, called V3, for capturing, managing, processing
and visualising video data sets. We highlight the conceptual similarity between video visualisation and the
traditional volume visualisation, and describe the deployment of conventional transfer functions and spatial
transfer functions in video visualisation. We examine several statistical image comparison metrics and discuss
their effectiveness in extracting meaningful information from video sequences. This work demonstrates the
importance and the potential of combining graphics, video and vision technologies.

Keywords: video visualisation, video processing, volume rendering, image-swept volumes.

1. Introduction

The rapid advance of digital technologies has resulted in an
explosion of digital imagery data. In particular, video data,
generated by the entertainment industry, security and traf-
fic cameras, video conferencing systems and not mention-
ing video emails, internet videos, etc., is perhaps most time-
consuming to process. For example, an increasing problem
in the security industry is the ratio of surveillance cameras to
security personnel. It is simply not possible for any security
officer to study a large number of video screens concurrently,
while his/her attention can easily be drawn to a particular in-
coming video stream at any time. It is hence highly desirable
to develop methods for extracting and highlighting interest-
ing features in video sequences.

There is a rich collection of techniques for analysing im-
agery data, and for computing various statistical indicators.
However, most of the techniques have not reached such an
intelligent level that they can be relied upon to make deci-
sions in place of a human. There is also a general lack of
effective techniques to convey complex statistical informa-
tion intuitively to a layperson such as a security officer.

In this paper, we present a novel approach to the handling
of large volumes of video data. We propose to employ vol-
ume visualisation techniques for “summarising” video se-
quences, and to render video volumes into appropriate visual
representations that can be used to assist in our decision pro-
cesses. For example, when a security officer arrives at his/her
office in the morning, he/she can be presented with one or a
few visualisations for each surveillance camera that has been
monitoring a premise during the previous night. From the vi-
sualisations, the officer can observe the level and patterns of
activities recorded overnight, and decide if any specific sec-
tion of a particular video needs to be replayed for further
investigation. Video visualisation can also be used to assist
in video processing, such a video segmentation.

The key to our approach is the volume visualisation tech-
nology, which has been successfully and extensively de-
ployed in medical imaging and scientific visualisation. Video
data is a type of volume data. Many statistical indicators of
video data can also be represented in a volumetric form. This
conceptual similarity allows us to utilise, in our work, some
powerful volume visualisation and volume graphics tech-
niques, such as opacity transfer functionsand spatial trans-
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fer functions. The results of this work have demonstrated the
importance and the potential of combining graphics, video
and vision technologies.

Our paper is organised as follows. In Section 2, we will
briefly review the existing work on video processing and
volume visualisation. In Section 3, we will describe the de-
sign and development of a prototype system, called V3 (short
for Volume Visualisation for Videos), which offers a system
architecture for bringing together the technologies of video
processing and volume visualisation. In Section 4, we will
describe the use of volume modelling and rendering tech-
niques for video visualisation. This will be followed by a dis-
cussion in Section 5 on several statistical image comparison
metrics for extracting the “difference” features from video
sequences. In Section 6, we will present some visualisation
results and discuss the visual features in the visualisations.
We will offer our concluding remarks and an indication of
future work in Section 7.

2. Related Work

In 1997, Yeo and Yeung pointed out the needs for visual-
ising video in order to “overcome the sequential and time-
consuming process of viewing video” 9. They suggested to
use browsing techniques for viewing a video like flipping
through a book. In recent years, a number of video database
management systems were proposed and developed, all of
which were focused on video archiving, segmentation, and
contents management.

Many algorithms, which have been developed for process-
ing images, can find their roles in video processing. Perhaps
the most extensive use of such algorithms is in the areas of
change detection 2, and content-based video retrieval 7.

During the past fifteen years, we have witnessed signif-
icant advances in volume visualisation and volume graph-
ics 3, driven mainly by applications such as medical imaging
and scientific computation. The work in this area has pro-
duced a large collection of methods that enable 3D informa-
tion in a volumetric dataset to be selectively rendered into
a single 2D image. The previous developments that relates
strongly to this work includes direct volume rendering 6,
constructive volume geometry 3 and image-swept volumes 8.

However, despite of the similarity between video data and
volume data, there has not been much effort to bring video
processing and volume visualisation together, perhaps ex-
cept a demo by the Microsoft Research 5, and some attempts
to introduce image comparison to visualisation 10.

3. V3: System Overview

V3 – Volume Visualisation for Videos– is a system designed
to integrate a collection of techniques for capturing, manag-
ing, processing and visualising videos. It contains many util-
ities that can be effectively used for handling pre-recorded

videos, for applications such as video segmentation. How-
ever, its primary design objective is to facilitate quick anal-
ysis of recently archived video data, such as in the security
industry, through the use of volume visualisation. This ob-
jective is reflected strongly in the design of the V3 system
architecture and its user interface.
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Figure 1: System architecture of V3.

Figure 1 illustrates the overall system architecture of V3,
which allows multiple sites to be monitored concurrently
in real-time from a single control centre. At each remote
site, we have a set of cameras that can be interactively con-
trolled (e.g., EVI-D31/B Sony video cameras). The imagery
data captured by the cameras are combined by, and trans-
ported through, an MV87 Quad box, with which an indi-
vidual or combined view can be selected at the control cen-
tre. The main software system of V3 is expected to be in-
stalled in a control centre, where users can interactively con-
trol the remote cameras, select views, setting up recording
processes, and most importantly “visualising” the captured
data in many forms.

There are three major algorithmic modules in the soft-
ware framework of V3, namely image processor, statistical
analyserand volume renderer. The image processor mod-
ule consists of a number of image processing filters, change
detection filters and image comparison metrics. The module
takes the raw imagery data as inputs, and generates appro-
priate outputs for the statistical analyser and volume renderer
modules. The statistical analyser takes inputs from the image
processor module and produces numerical statistical indica-
tors, which are then forwarded to the visualisation module
where the statistical indicators are presented as 2D charts
(such as line graphs, pie charts and bar charts). The actual
functional boundary between the statistical analyser and im-
age processor is a bit blurred in our implementation, because
it is often more efficient to compute some basic statistics,
such as mean pixel intensity of an image, during image pro-
cessing. In general, statistical indicators local to an image
are usually computed in the image processor module, while
the global statistical indicators for the entire video, or any of

c� The Eurographics Association 2003.

104



Daniel and Chen / Visualising Videos

its sections, are computed in the statistical analyser module.
The volume renderer module handles only volumetric data,
which includes the raw video data as well as that generated
by the image processor. One example of generated data is a
sequence of difference images resulting from an image com-
parison metric. This modular design gives us the flexibility
to replace existing metrics, filters and algorithms, and add
new ones, whenever necessary.

Figure 2: The main screen layout of V3.

Figure 2 shows the two most important windows of V3.
The window at the back is the top-level window that shows
a list of incoming video streams, together with the camera
control facility for a selected site. The window in the front
is a visualisation window for the video sequence from the
selected site. It contains a sub-window for displaying a ren-
dered visualisation image and another for a statistical chart.
In addition, it offers displaying areas for selecting and man-
aging image processing filters and comparison metrics.

The Microsoft Visual C# .NET development environment
has been used to implement the main software components
of V3, though many filters, metrics and algorithms were first
implemented in C and tested in a Linux environment.

4. Rendering Video Datasets

A video data set V is composed of a series of images
I1� I2� � � �� Itn, where all images are normally of the same res-
olution xn� yn. Hence V can be considered as a collection
of voxelsthat are organised into a 3D regular grid as:

V � �vx�y�t �1 � x� xn�1 � y� yn�1 � t � tn��

Each voxel v is addressed by its grid coordinates �x�y� t�, and
is associated with one or more scalar values representing im-

agery properties such as intensity and colour components. In
volume visualisation, such a structure is commonly referred
to as a volume data set, 3D rasteror a volume buffer. Be-
cause the t dimension is of a different nature from that of the
x or y dimension, V should normally be manipulated as an
anisotropic grid, whenever the spacing between neighbour-
ing voxels is a matter of interest.

The principal objective of volume visualisation is to ex-
tract meaningful information from volumetric data using
computer graphics. Volume rendering techniques, which
have been extensively deployed in medical imaging and sci-
entific visualisation, allow information contained in a vol-
ume data set to be selectively rendered into a single 2D im-
age. This easily leads to the desire for visualising informa-
tion contained in a video data set.

Figure 3: A video data set is a spatial object.

Like conventional volume data sets, when coupled with
an interpolation function, such as trilinear interpolation, a
video data set V is essentially a spatial object�, which is
composed of a set of geometrically-bounded attribute fields
�A0�A1� � � ��Ak�. Let� denote the set of all real numbers, and
�

3 denote 3D Euclidean space. Each attribute field is a scalar
field function F : �3 ��. A typical raw RGB video data set
is thus a discrete specification of a spatial object with three
attribute fields, namely red, green and blue channels. In Fig-
ure 3, an 80-second sequence of a recorded television news
programme, for which three example frames were shown,
is treated as a spatial object, and displayed as a volume of
colour points.

When information contained in a 3D spatial object is ex-
tracted and rendered into a 2D image, it is inevitable that
some visual features may be obscured by others. This prob-
lem can normally be dealt with through interactive manipu-
lation of the camera parameters such as the viewing position.
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(a) horizontal view

(b) downward diagonal view (c) vertical view

(d) horseshoe view

Figure 4: In addition to the upward diagonal view shown in
Figure 3, V3 provides another four different views.

However, this is not always practical to a security officer who
looks after several dozens of cameras. Hence one of our ob-
jectives is to provide users with some intuitive but powerful
visual representations in order to facilitate a quick decision-
making process. We experimented with many designs and
selected five representations as standard options in V3. In
addition to the upward diagonal view shown in Figure 3, V3

also provides a horizontal view, a vertical view, a downward
diagonal view, and a horseshoe view (Figure 4).

In general, the horseshoe view conveys more information
than the other four views, though it shows a horizontally-
flipped image at its right end. The construction of such a
visual representation is achieved by employing the image-
swept volumetechnique 8. Instead of deforming a video vol-
ume directly during modelling, we associate the object with
a spatial transfer function, Ψ : �3 � �

3 . Ψ defines the geo-
metrical transformation of every point p in �3 . It is used to
modify the sampling position of a scalar field A during ren-
dering in the form of A��p� � A�Ψ�p��. Direct rendering of
a spatial object using a ray casting algorithm 6 is essentially
a discrete sampling process for evaluating scalar fields asso-
ciated with the spatial object. With Ψ, an evaluation of A� at
p implies the evaluation of A at q� Ψ�p�.

Chen et al 4 recently demonstrated that spatial trans-
fer functions can be defined as spatial objects, and they
can be integrated into a scene graph in the same way
as conventional spatial objects. In V3, we have a built-
in scene graph that includes a spatial transfer func-
tion node, which is only activated for the horseshoe
view. The spatial transfer function q � Ψ�p� is a semi-
circular sweep. Consider our video volume is defined in
a normalised coordinate system of the domain �0�1�3.
Let r �

�
�px�0�5�2 ��py�0�5�2 ��pz�0�5�2 and φ�

arctan�pz�0�5� px�0�5� � ��π�π�. We have:

qx �

�
2�4r 0�25 � r � 0�5

0 otherwise

qy � 1� py

qz �

�
1�φ	π φ
 0

0 φ� 0

Opacity and colour transfer functions(which are often re-
ferred to simply as transfer functions) are an intrinsic part
of volume visualisation, and in particular, direct volume
rendering. It is common to define an attribute field upon
another using a transfer function, usually in the form of
Ai�p� � Φ�Aj�p��� p� �

3 , where Φ : �� �. During ren-
dering, transfer functions are used to select what information
is to be visualised by modifying the opacity field of a spatial
object, or determine how information is to be displayed by
modifying its colour fields.

In V3, each object � � �O�R�G�B�D� is defined with five
attribute fields, namely opacity, red, green, blue and data.
For example, the spatial object � shown in Figure 3 is in fact
associated with a uniform, fully opaque, opacity field within
the bounding volume. The data field D is usually used to rep-
resent non-visual data, such as a difference volume, and fa-
cilitates the normal estimation. In the following discussions,
we assume that the values of all these five scalar fields are
normalised to the domain [0, 1]. (It is common in image process-
ing to denote an opacity channel using α or A. In volume graphics
and field-based modelling, normally the same alphabet is applied
consistently to all fields including opacity, colour components, nor-
mal, reflection, etc. Both conventions can be adopted in this paper,
as we do not include many other fields in our discussions. However,
we feel it is more appropriate to use O�p� for the opacity, empha-
sising the fact that it is a 3D scalar field and is one of the attribute
fields of a spatial object.)

Let us construct a visualisation by defining a non-uniform
opacity field O based upon the hue property of the spatial
objects. From the RGB fields of �, we first obtain HSV com-
ponents, hue H�p� � �0�360�, saturation S�p� � �0�1�, value
V�p� � �0�1�. We then define the opacity field as:

O�p� �

�
0�2V�p� 225 � H�p�� 255

1 otherwise

This transfer function results in the visualisation shown in
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Figure 5, which turns parts of the objects with blue as the
dominant wavelength, such as the blue background behind
the newscaster, into translucent amorphous matters.

Figure 5: The application of a transfer function.

Many features of a video sequence can also be represented
by a volume data set. For example, we can construct a vol-
ume data set that represents the relative difference between
consecutive images in V, that is:

∆�I1� I2��∆�I2� I3�� � � ��∆�Itn�1� Itn� (1)

where ∆ is a difference function that operates on images.
Here we simply assume that ∆�Ii � Ii�1� results in an image
representing some form of visual difference between Ii and
Ii�1. The sequence of difference images is in itself a volume
data set, and can be used to assist in the visualisation of the
original video data set. In the next section, the computational
specification of such a difference function will be consid-
ered. The use of difference images in visualisation will be
examined in Section 6.

5. Computing Image Difference

In this section we will consider several different image com-
parison metrics. We concentrate on the global statistical met-
rics which allow us to compare, in Section 6, the effective-
ness of visualisations and statistical indicators. We consider
the capability of each metric for highlighting the geometrical
difference caused by moving objects while de-highlighting
any luminance and colour difference caused by the change
of lighting conditions.

There are various colour spaces where image comparison
may take place. In this paper, we focus on the YIQ space,
which is a linear transformation of the RGB space:�

�Y
I
Q

�
��

�
�0�299 0�587 0�144

0�596 �0�275 �0�321
0�212 �0�523 0�311

�
�
�
�R

G
B

�
�

The main advantage of using the YIQ model is that the lumi-
nance information is decoupled from the colour information,
and this allows us to examine the effectiveness of difference
computation in terms of luminance and colour separately.

Although it is desirable to employ a perceptually uniform
colour space to compute colour difference, this would make
V3 dependent on individual colour matching specifications
for different video capture devices.

Let us consider first three comparison metrics, namely Y-
DIF, Y-MSE and IQ-DIF.

� Y-DIF�I1� I2� – simple difference metric– It takes two in-
put images, I1 and I2, and computes a grey-scale output
image O where each pixel represents the linear distance
between the Y-values of two corresponding pixels in I1
and I2 respectively.

� Y-MSE�I1� I2� – mean squared errormetric – Instead of
the linear distance, it computes the squared distance (i.e.,
error) between the Y values of each pair of corresponding
pixels. The name of the metric is inherited from the cor-
responding statistical indicator that calculates the mean of
the squared errors of all pixels in an image.

� IQ-DIF�I1� I2� – colour difference metric– It computes
the angle between the IQ vectors of the two corresponding
pixels in I1 and I2, and sets the corresponding pixel value
in O to the angle. It gives a result similar to that obtained
by computing the hue difference in the HSV space.

Figure 6 shows a reference image A, and a set of three ex-
ample images, B, C and D, which are compared against the
reference image A. All images were extracted from a surveil-
lance video of a university car park. The reference image A
shows an empty car park in a reasonably good lighting con-
dition. B, C and D represent images that exhibit different
levels of activities and are taken in different lighting condi-
tions. The difference images computed using Y-DIF, Y-MSE
and IQ-DIF are also shown in Figure 6. In order to maintain
a consistent evaluation, we scale the value range of each out-
put image from its individual min-max range to [0, 255]. As
this scaling process is image-dependent, it is not suitable for
the general use in V3.

From Figure 6, we can see that IQ-DIF does not perform
as well as what one would expect. This is partially due to
the fact that all images were JPEG-compressed by the image
capturing device. The compression seems to be optimised
for luminance at the cost of redistributing colours within
small regions across the image. Y-DIF seems to be affected
badly by the lighting conditions, while both Y-DIF and Y-
MSE have some difficulties to distinguish geometrical dif-
ference from luminance difference. This naturally leads to
the process for normalising image luminance.

Metrics Y-NDIF and Y-NMSE are the normalised ver-
sion of Y-DIF and Y-MSE respectively. Before we apply
Y-DIF�I1� I2� and Y-MSE�I1� I2�, we first normalise the Y-
component of each input image based on its mean value
and standard deviation. To a certain extent, this may reduce
the luminance difference caused by different lighting con-
ditions. Ideally one could carefully select a “geometrically-
static” section in the images for guiding the normalisation. In
practice, it is not always feasible. In our example, the large
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(a) reference A (07:34:00) (b) image B (06:30:00)

(c) image C (12:23:49) (d) image D (18:20:00)

(e) Y-DIF�A�B� (f) Y-DIF�A�C� (g) Y-DIF�A�D�

(h) Y-MSE�A�B� (i) Y-MSE�A�C� (j) Y-MSE�A�D�

(k) IQ-DIF�A�B� (l) IQ-DIF�A�C� (m) IQ-DIF�A�D�

Figure 6: Three captured images in (b), (c) and (d) are com-
pared with a reference image in (a) using three different met-
rics, namely Y-DIF, Y-MSE and IQ-DIF. The value ranges of
the resultant images are re-mapped to the [0, 255] domain
for comparative evaluation. In addition, all difference im-
ages, (e) - (m), have been inverted for clearer printing.

section covering the ground is “geometrically-dynamic”,
due to the movement of cars. Although the section cover-
ing the building is relatively geometrically-static, its lumi-
nance does not change uniformly, as windows are affected
by individual office lights that are switched on or off in an
unpredictable manner.

Figure 7 shows the results of applying Y-NDIF and Y-

NMSE to the same set of examples in Figure 6. To help visu-
alising the three images in each row in a consistent manner,
we also rescale the original results through multiplying by a
constant, i.e., 30 for Y-NDIF and 10 for Y-NMSE. The level
of activity in general is better conveyed in those images.

(a) Y-NDIF�A�B� (b) Y-NDIF�A�C� (c) Y-NDIF�A�D�

(d) Y-NMSE�A�B� (e) Y-NMSE�A�C� (f) Y-NMSE�A�D�

(g) rescaled (h) rescaled (i) rescaled
Y-NDIF�A�B� Y-NDIF�A�C� Y-NDIF�A�D�

(j) rescaled (k) rescaled (l) rescaled
Y-NMSE�A�B� Y-NMSE�A�C� Y-NMSE�A�D�

Figure 7: With the Y-NDIF metric, normalisation was ap-
plied prior to the difference operation, resulting in (a), (b)
and (c). Similarly Y-NMSE results (d), (e) and (f). In (a)-(f),
the value ranges of the resultant images are re-mapped to the
[0, 255] domain for comparative evaluation. We can usually
apply a constant scaling factor for a sequence of images, and
this effectively acts as a transfer function for direct volume
rendering. In (g), (h) and (i), the original results of Y-NDIF
are rescaled by a factor of 30, and in (k), (l) and (m), those
of Y-NMSE, are rescaled by a factor of 10. All images in this
figure have been inverted for clearer printing.

6. Results and Remarks

A sequence of difference images is also a volume data set,
and can thereby be visualised using volume rendering tech-
niques. We may render such a volume data set to highlight
some statistical features of the original video data set. Our
first example is to examine the effectiveness of using video
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visualisation for identifying the transition frames between
different segments of a news video, with a particular fo-
cus on the correlation between visualisation and statistical
indicators. We experimented with four metrics, Y-DIF, Y-
MSE, Y-NDIF and Y-NMSE, for computing difference vol-
umes, from which visualisations are obtained using appro-
priate opacity and colour transfer functions.

Two of such visualisations, associated with Y-DIF and Y-
NMSE, are shown in Figure 8, together with line graphs
(in Figure 9) which depict the mean intensity of each dif-
ference image computed using both Y-NMSE and Y-DIF,
and the manually identified transition points. The intensity
of the amorphous matters in the visualisation represents
the changes between consecutive images. In some cases
the original image patterns are visible, and in some other
cases the image frames can be identified, indicating a ma-
jor change between two different segments. As shown in the
figure, the visualisation associated with Y-DIF conveys vi-
sual information that is consistent with the statistics shown
in the corresponding line graph, though Y-DIF misinterprets
many camera flashes (15:00:07-15:00:16, 15:00:51) as seg-
ment transition points. The visualisation associated with Y-
NMSE (with a scaling factor of 10) is less effective in high-
lighting transition frames, though the corresponding statisti-
cal indicators are more consistent with manually identified
transition frames.

Figure 8: Visualisation of transition frames in an ITN news
video. Y-DIF (top) and Y-NMSE (bottom) are used to com-
pute the difference volumes respectively.

Our second example involves the car park video sequence,

Figure 9: Statistical indicators corresponding to Figure 8.
Top: mean intensity of difference images computed using Y-
DIF. Middle: using Y-NMSE. Bottom: manually identified
transition frames.

which contains 662 images taken over a 12 hour period.
The visualisation in Figure 10 depicts the relative differ-
ence between consecutive images in the sequence as defined
in Eq(1). On the other hand, the visualisation in Figure 11
shows the absolute difference between each image in the se-
quence and a reference image R, that is:

∆�I1�R��∆�I2�R�� � � ��∆�Itn�R�

Figure 10: The visualisation of a “relative” difference vol-
ume computed from the car park video sequence.
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Figure 11: The visualisation of an “absolute” difference
volume computed from the car park video sequence.

Both difference volumes are visualised on their own with
a colour transfer function, indicating the scale of changes
(i.e., red for large intensity changes, green for medium and
blue for small). Figures 10 offers a visual representation in-
dicating the level of activities during the recording period,
that is, movement of cars. The same pattern of activities are
shown in the visualisation and the line graph. Figure 11 gives
an interesting visualisation, where the swept lines indicate
many stationary cars in a large part of the recording period.
The visualisation shows the level of usage of the car park,
with little occupancy in the early morning, a full car park
during the day, and some dynamic activities in the evening
when staff were leaving for home and evening students were
coming to the university. On the video, there was a major
change of the weather condition during the afternoon, and
this change is clearly visible from the line graph which could
misinform us of some extra activities or occupancy. How-
ever, in the visualisation, it is much easier to discard such
changes as the amorphous blue patterns are perpendicular to
the line time.

7. Conclusions and Future Directions

We have described an approach that can effectively “sum-
marise” a video sequence and can be deployed to deal with
the problem of the rapid explosion of video data. We have
shown that video data can be processed and visualised in the
same manner as other volumetric data. We have examined
several statistical image comparison metrics. With the aid of
two example video data sets, a television news programme
and a surveillance video, we have demonstrated the useful-
ness of video visualisation. In many cases, visual representa-

tions of a video conveys more information than statistical re-
sults presented in graphs. Among those metrics considered,
we have found that Y-NMSE correlates well with statistical
indicators. Y-DIF can result in good quality visualisation for
videos captured in well-controlled conditions, but may eas-
ily lead to misrepresentation in situations where luminance
varies dynamically.

Our future work will have two strands, (i) the continu-
ing investigation into image comparison metrics in order to
improve the effectiveness of the difference calculation, and
(ii) the development of a progressive volume rendering algo-
rithm for rendering images when they are captured.
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