
Vision, Video, and Graphics (2003), pp. 1–6
P. Hall, P. Willis (Editors)

A novel form of a pointing device

H. Cantzler and C. Hoile

Intelligent Systems Lab, BTexact Technologies, Ipswich, UK

Abstract

This paper presents a novel approach for man machine interaction applying real time computer vision techniques.
We use a handheld camera to control the mouse cursor on a computer display. The camera captures an image of
the display in its field of view and this can be used to judge the camera’s position and orientation relative to the
display. The problem is modelled as a plane-to-plane projection (homography). Once the mapping of the display
in the camera view to the real world display is known, the intersection between the central axis of the camera
and the surface of the display can be computed. The mouse pointer is then moved to the corresponding display
position. This calculation can be iterated continuously to update the mouse cursor position as the camera position
and orientation changes. The camera can then be used to control the mouse cursor just like a laser pointer controls
a laser dot. A prototype has been developed to demonstrate the approach.

1. Introduction

A pointing device like a mouse enables users to control a
pointer and interact with a graphical user interface. Some
devices are more intuitive and flexible to use than others.
Controlling the spot produced by a laser pointer is intuitive
and requires no technical skills or previous experience. By
contrast, touchpads, trackballs and mice control the mouse
pointer only indirectly and also require specific conditions
(e.g. a mouse requires a supporting surface of a specific tex-
ture).

We present a novel pointing device which is very intu-
itive to use and requires only low-cost simple hardware. Our
pointing device employs an off the shelf web camera to con-
trol the mouse pointer on the screen. It does this by find-
ing the screen in the camera view. We calculate where the
centre of the camera view is on the screen and move the
mouse pointer accordingly (see figure 1). Using the device,
the mouse pointer can be controlled in the same way as the
spot of a laser pointer, by physically orienting the pointing
device at the desired location on the screen. Since our control
strategy only requires the visibility of a screen display, it can
potentially be used to control a pointer on any display device
(white paper, see http://www.cefn.com/papers/wand.pdf).

The device is designed to replace conventional 2D pointer
devices such as touchpads, trackballs and mice. It can be
used just by orienting it freely in 3D space in any environ-

ment where a mouse pointer must be controlled on a screen.
It would be particularly useful in deskless environments,
walk and talk environments, interactive TV, or as an intuitive
pointer for next generation interfaces (e.g. in video games)
and in general as an accessibility tool.

Early research in Human-Computer Interaction (HCI) en-
abled users to access the computer by moving their eyes 5.
Five electrodes were placed around the eye. The electrodes
sensed the eyes movement and transmitted it to the com-
puter. Current computer vision research is mainly concen-
trated on visual hand/face gesture recognition and tracking
systems using video cameras. Gestures such as hand, finger
2, 12, head 1, face 4 or eye 13 movement can be used to control
the computer. Even the movement of a mouse like object
on a mouse pad can be used 3. The observed movement is
translated into movement of the mouse pointer. The sensor
typically consists of a video camera which follows the move-
ment. A commercial application also exists from Natural-
Point. A infrared sensor is mounted on top of the display.
It emits infrared light that is reflected by a special marker
attached to the users head or finger. So, head or finger move-
ment can be recognised and translated into mouse move-
ment. The mouse pointer is controlled according to the hor-
izontal and vertical movement of the marker relative to the
sensor’s field of view, which can be quite counter-intuitive.
The position of the finger in front of the centre of the dis-

submitted to Vision, Video, and Graphics (2003)

http://www.eg.org
http://diglib.eg.org


Cantzler et al / A novel form of a pointing device

Figure 1: We identify the screen (top left) in the web-cam image (bottom left), calculate where the centre of the web-cam points
at on the screen (bottom right) and set the mouse pointer on the screen accordingly (top right).

play does not necessary correspond with the centre position
of the mouse pointer on the display. The position must be
calibrated first. Similarly, the speed of the mouse movement
relative to the finger movement must be set. More advanced
video based optical tracking systems, which are used for ex-
ample for real-time gesture recognition 10, overcome those
shortcomings.

Our approach avoids these problems since the camera can
be oriented at any point on the display in an intuitive and un-
ambiguous way, with no calibration. We use a single hand-
held camera which points towards the display. Research in
robotics has shown us that we can estimate the localisation
of a single camera in real-time 9. However, estimation of the
camera pose in real-time is still a challenging task. Our ap-
proach uses projective geometry to estimate the position the
camera points at. It maps the display in the image to the dis-
play in the world. This is a plane to plane transformation
and is called homography 6. To calculate the homography
we have to extract 4 corresponding pairs of points from the
camera image and the display image.

The paper is organised as follows: In section 2 we present
a brief overview about homography. In section 3 we discuss
image segmentation and extraction of corresponding regions
and points. In section 4 we give details to our prototype

implementation and its performance. Section 5 includes the
conclusion and section 6 discusses future extensions to our
approach.

2. Homography

We model the problem of estimating the mouse pointer posi-
tion as the estimation of the homography of the screen in the
image to the screen in the world. Points p in one plane are
mapped into the corresponding points w in the other plane
by using a 3 x 3 projection matrix h representing the homog-
raphy transformation. (see figure 2).





px
py
1



 =





h11 h12 h13
h21 h22 h23
h31 h32 h33









wx
wy
1



 (1)

Once the homography matrix h is known (or has been
computed), any image point can be mapped into the corre-
sponding location on the display’s planar surface. The re-
verse is also true.

The homography matrix h is computed from a set of non-
collinear corresponding points. We need to specify 4 point
correspondences to obtain an exact solution. However, if

submitted to Vision, Video, and Graphics (2003)

58



Cantzler et al / A novel form of a pointing device

more than 4 such pairs are extracted, then the correspon-
dences might not be fully compatible. Therefore, we have to
select the best 4 pairs of points. Each of the 4 image to world
point correspondences provides then two equations which
are linear in the elements of the matrix h. They are:

px =
h11wx +h12wy +h13
h31wx +h32wy +h33

(2)

py =
h21wx +h22wy +h23
h31wx +h32wy +h33

(3)

and multiplied out:

h31 pxwx +h32 pxwy +h33 px = h11wx +h12wy +h13 (4)

h31 pywx +h32 pywy +h33 py = h21wx +h22wy +h23 (5)

Figure 2: The planar display screen in the world (right) is
projected onto the planar screen in the image plane (left)

For 4 correspondences we obtain a inhomogeneous set of
8 equations in 8 unknown. We assume h33 equals 1. Impos-
ing the condition is justified since the solution is determined
only up to scale. A linear solution for h is then obtained by
solving the set of linear equations.















w1x w1y 1 0 0 0 −p1x w1x −p1x w1y

0 0 0 w1x w1y 1 −p1y w1x −p1y w1y

...
...

...
...

...
...

...
...

w4x w4y 1 0 0 0 −p4x w4x −p4x w4y

0 0 0 w4x w4y 1 −p4y w4x −p4y w4y





























h11
h12

...
h31
h32















=















p1x

p1y

...
p4x

p4y















(6)

3. Corresponding points

To estimate the homography we need to extract 4 corre-
sponding points. Extracting corresponding points is a funda-
mental problem in computer vision. Correspondence tech-
niques can roughly be divided into feature based and corre-
lation based techniques.

Typically, feature-based techniques identify correspond-
ing strong landmarks like corners or line intersections in the
images. These landmarks are invariant to projective trans-
formations and lead to precise matches. However, extract-
ing them is computationally rather expensive. Initial edge
extraction (e.g. Sobel and Canny) is fairly quick. However,

the following corner extraction (e.g. Harris) or line extrac-
tion (e.g. Hough) does not deliver results with an adequate
speed.

Classical correlation based techniques have often been
used for recovering correspondence in images with small
transformations. This technique is extreme easy to use. The
image is divided in small windows and for each window an
characteristic value depending on the intensity values in the
window is calculated. Windows in the two images with sim-
ilar values are matched consecutively. Beside its simplistic
use, this technique is also computationally very effective.
However, this approach falls short in terms of invariance to
projective distortions (one needs to adjust the window size
and shape) and colour distortions (camera distortions and
motion blur).

For our first prototype we employed an approach which
combines the efficient nature of the correlation based tech-
nique and the precise invariant properties of the feature
based technique.

The first step is to sub sample the data to make the fea-
ture extraction in the following steps less computationally
demanding, since we need to analyse less data. The sub sam-
pled data is then used to find connected regions with the
same colour. We allow small graduated colour changes in the
regions to compensate for small illumination changes result-
ing from inhomogeneous lighting. We exploit the fact that
screenshots of office programs or presentation slides con-
sist of strong structural elements such as strong edges and
coloured regions. Thus, we can segment the display content
and the camera image. Regions are represented by their cen-
tre of gravity, size and colour. We select the biggest region
b from the computer display device. From the camera image
we extract the n biggest regions rn, since we are not inter-
ested in small regions. See the top right picture of figure 3
for an example segmentation.

The next step is to identify the region in the camera image
which corresponds with the selected region b on the display
(shown in the bottom left of figure 3). We generate a candi-
date table including all the extracted n regions from the cam-
era image. For each region we then calculate a score scorei.
The score includes how different the colour of the region ri
is compared to b, how much the region is in the centre of the
view and its size. We compare the colours in HSV (Hue, Sat-
uration and Value) space taking H and S into account. The
HSV space separates the intensity (or luminance) from the
colour information. Our segmentation is therefore robust to
changes in illumination. The last two terms exploit the prop-
erties that the region in search must be close to the centre of
the view, (the camera’s central axis must intersect with the
screen to position the pointer at all), and that it is unlikely
to be very small, (since it must present a viewable display
for the human user). Regions on the exterior of the camera
image and small regions thus get a penalty. All three terms
are weighted with a1, a2 and a3.

submitted to Vision, Video, and Graphics (2003)

59



Cantzler et al / A novel form of a pointing device

Figure 3: The top left image shows a computer screen in an office environment with a typical slide of a slide presentation.
The image of the scene is segmented into coloured regions on the top right. The biggest region on the display is the white
background region. The corresponding region is selected from the extracted regions in the camera image on the bottom left.
The bottom right shows the extracted region border and the extracted corner points. Some surplus corner points are extracted,
because of an imperfect segmentation. Only the 4 outer corner points are used for estimating the projection, since they are
furthest away from each other.

scorei = a1colour(b,ri)+a2centre(ri)+a3size(ri) (7)

The image of the scene is segmented into coloured regions
on the top right. The region which the highest score is se-
lected as the corresponding region.

At this point, we have identified the region in the cam-
era view which corresponds with the region b on the display.
However, to compute the homography we need to identify 4
corresponding points. We identify corresponding points on
the two region borders. Firstly, the region border in the cam-
era image is smoothed with a morphological filter. The out-
line of the border is then tracked and strong corner points
(i.e. points of high curvature) are extracted. On a display in
a working environment there are typically strong structural
elements such as corner points. The bottom right image of
figure 3 shows an example extraction of the region border
with the extraction of corner points. We do the corner point
extraction for the regions in the camera image and the dis-
play image.

To estimate the homography, we need to restrict the num-
ber of the corresponding corner points to 4. We use a sim-
ple heuristic here to remove surplus and wrongly extracted
corner points that result from small segmentation errors. We
select the 4 corresponding corner points which are furthest
away from each other. Since we work with corresponding
regions, they have the same shape and the corner points
that are furthest away from each other, should be the same.
Futhermore, using corresponding points that are far away
from each other make the estimation of the homography
more stable.

In a final step, the positions of the corner points are refined
by extracting them from the original data. This compensates
for the imprecision introduced by the sub sampling earlier
on. Now, that we have a set of 4 corresponding point pairs,
we can use them to compute the homography and project the
centre of the camera image back onto the plane of the display
screen, giving us the correct position for the mouse pointer.

submitted to Vision, Video, and Graphics (2003)

60



Cantzler et al / A novel form of a pointing device

4. Implementation and results

We implemented a prototype which employs the above de-
scribed techniques in C. The program runs under the Linux
operating system.

For image acquisition, we used a low-cost off the shelf
Web-Cam from Phillips (PCVC740K "ToUCam Pro"). This
is a fairly small camera which can be easily held by a user.
It is connected to the computer via a USB 1.1 interface
(11MBit/sec). The Linux hardware driver utilise compres-
sion to achieve a higher framerates with the webcam. The
driver delivers a RGB image.

The Web-Cam delivers images in a resolution of 320 by
240 which is sub sampled by a factor of 3 to 106 by 80 by the
prototype. The prototype was tested on a Pentium II based
Laptop (400 Mhz). The slide presentation was displayed on
the 14.1 TFT Laptop display with the resolution of 1024 by
768. Figure 3 shows a sample slide of the presentation on the
top left.

In our prototype experimentation we used presentation
slides which had homogeneous regions which were already
known. This allows the CPU to be dedicated to the auto-
matic analysis of the camera image, hence maximising the
frequency at which the mouse cursor position is updated.

We achieve real-time performance. The update frequency
for the mouse pointer position is roughly 10 times per sec-
ond. The precision of the mouse pointer position estimation
is 2~3 pixels, which results in small jumps of the mouse
pointer on the screen when the camera is held still. The
used region extraction can coupe with moderate illumination
changes in the environment.

The prototype works in a range of 40cm until 3m dis-
tance to the screen. The lower bound of this range arises
because the prototype implementation requires the whole
corresponding region, including its corners, to be visible by
the camera. At distances over 3m, the display content in the
camera image becomes too small and it becomes difficult to
identify the region corresponding to the display in the cam-
era image.

5. Conclusions

We have presented the development of a prototype which
demonstrates a novel approach for a computer pointing
device. The development can have many applications in
Human-Computer Interaction (HCI). A camera held by the
user is used to control the mouse pointer by moving the cam-
era freely in space in a similar fashion to the way a laser
pointer controls a laser dot.

The program locates the computer display in the camera
image by finding matching regions following region extrac-
tion. Corresponding points on the region border are extracted
which are points of high curvature. The homography is esti-
mated with 4 such corresponding pairs of points. Thus, the

centre of the camera image can be projected onto the display
screen. The mouse pointer is moved to the estimated posi-
tion, and hence the mouse pointer is controlled. Crucially,
this technique is computationally efficient, and could there-
fore allow the user to use normal office applications whilst
achieving a suitable update frequency for the mouse pointer
position.

The experimental platform has been designed to accom-
modate future experimentation with alternative techniques.
It is hoped to acquire further investment, and identify ap-
propriate academic or commercial partners to develop a full
fledged product based on the ideas presented in this paper.

6. Future development

The technique presented in this paper works by computing
the homography with 4 extracted corresponding points in the
two views - the camera image and the display image. The
chosen method exploits the fact that there is much structured
content (large regions). Further work is necessary to identify
corresponding points within less structured data such as pho-
tographic images and videos. Furthermore, using more than
4 corresponding point pairs would make the results more sta-
ble.

Tracking techniques can be used which take advantage of
the computations completed in the last iteration of the al-
gorithm to improve the efficiency of mouse pointer position
estimation in the next iteration. A fast motion model 8 can be
used to track the screen in the camera view in real time. Also,
the effects of noise on the mouse pointer position estimation
could be reduced using techniques such as Kalman filtering
7, 11 and the effects of small involuntary hand-motions could
be smoothed by averaging over several iterations.

References

1. M. Black, F. Berard, A. Jepson, W. Newman, E. Saund,
G. Socher, and M. Taylor. The digital office:
Overview. American Association for Artificial Intelli-
gence Spring Symposium on Intelligent Environments,
Stanford, USA, 1998.

2. J. Crowley, F. Berard, and J. Coutaz. Finger tracking
as an input device for augmented reality. International
Workshop on Gesture and Face Recognition, Zurich,
1995.

3. I. Erdem, M. Erdem, Y. Yardimci, V. Atalay, and
A. Cetin. Computer vision based mouse. International
Conference on Acoustics Speech and Signal Proced-
ding, Orlando, USA, 2002.

4. J. Gips, M. Betke, and P. DiMattia. Early experiences
using visual tracking for computer access by people
with profound physical disabilities. in Universal Ac-
cess in HCI: Towards an Information Society for All,
2001.

submitted to Vision, Video, and Graphics (2003)

61



Cantzler et al / A novel form of a pointing device

5. J. Gips, P. Olivieri, and J.J. Tecce. Direct control of the
computer through electrodes placed around the eyes.
Human-Computer Interaction: Applications and Case
Studies, pages 630–635, 1993.

6. R. Hartley and A. Zisserman. Multiple view geometry
in computer vision. Cambridge University Press, UK,
2000.

7. S. Jung and K. Wohn. 3d tracking and motion estima-
tion using hierarchical kalman filter. IEE Proceedings
on Vision, Image and Signal Processing, 5(144):293–
298, 1997.

8. F. Jurie and M. Dhome. A simple and efficient template
matching algorithm. 8th International Conference on
Computer Vision, Vancouver, Canada, pages 544–549,
2001.

9. J. Knight, A. Davison, and I. Reid. Towards constant
time slam using postponement. Proceedings of the In-
ternational Conference on Intelligent Robots and Sys-
tems, Maui, USA, 2001.

10. R. Lockton and A. Fitzgibbon. Real-time gesture
recognition using deterministic boosting. British ma-
chine vision conference, Cardiff, UK, pages 817–826,
2002.

11. G.S. Manku, P. Jain, A. Aggarwal, L. Kumar, and
S. Banerjee. Object tracking using affine structure for
point correspondences. IEEE CVPR, San Juan, Puerto
Rico, 1997.

12. F. Quek, T. Mysliwiec, and M. Zhao. Finger-
mouse: A freehand pointing interface. Proceedings of
the International Workshop on Automatic Face- and
Gesture-Recognition, Zurich, Switzerland, pages 372–
377, 1995.

13. L.-Q. Xu, D. Machin, and P. Sheppard. A novel ap-
proach to real-time non-intrusive gaze finding. British
machine vision conference, Southampton, UK, pages
428–437, 1998.

submitted to Vision, Video, and Graphics (2003)

62


