
Vision, Video, and Graphics (2003)

P. Hall, P. Willis (Editors)

3D S.O.M. – A commercial software solution to 3D scanning

Adam Baumberg, Alex Lyons, Richard Taylor

Canon Resarch Centre Europe, The Braccans, London Road, Bracknell, Berkshire RG12 2XH

http://www.cre.canon.co.uk

Abstract

This paper describes the novel features of a commercial software-only solution to 3D scanning - the 3D Software

Object Modeller (3D S.O.M.). Our work is motivated by the desire to produce a low-cost, portable 3D scanning

system based on hand-held digital photographs. We describe the novel techniques we have employed to achieve a

robust software-based system in the areas of camera calibration, surface generation and texture extraction.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]:

1. Introduction

Conventionally generating photo realistic 3D models has

been an expensive and time-consuming operation. To auto-

mate this process a wide variety of 3D scanning devices is

available, for example using laser-based systems (e.g. Cy-

berware body scanners), structured light systems as well as

passive systems (e.g. Geometrix LightScribe). One particu-

lar problem with laser-based and structured light systems is

that they do not work well with shiny reflective objects and

it is often necessary to coat the surface with a non-reflective

layer (e.g. dust with chalk) which can result in unsatisfactory

texture data.

Our work is motivated by the desire to produce a low-

cost, portable 3D scanning system based on hand-held dig-

ital photographs. The only hardware requirements for our

system are a camera, a black & white calibration pattern

printed on any standard printer and a PC. We designed the

system to be as easy to use as possible although a certain

amount of skill is required in taking the photos and editing

any artefacts in the output model. The target model quality

is “reasonable looking” textured 3D models suitable for 3D

on the web. In general the more expensive hardware systems

are capable of producing very high quality 3D models. How-

ever, we have found that our low-cost software solution can

often produce comparable results, especially when compar-

ing models suited to bandwidth limited e-commerce appli-

cations. In this context the appearance (and file size) of the

textured model is much more important than the geometric

accuracy.

On a system level our approach is similar to that of

Niem 1. Like Niem we use a calibration object to ensure

accurate camera parameter estimation for arbitrary objects.

Similarly to ensure the system can handle untextured or

reflective objects and uncontrolled lighting we also use a

“shape from silhouettes” approach rather than rely on stereo

feature matching 2 or colour consistency 3. In contrast to

Niem, our system benefits from a new robust calibration ob-

ject, a novel batch technique for exact computation of the

“visual hull” and a novel texture blending scheme.

Currently we extract a simple texture map to represent the

appearance of the 3D surface. Structured or controlled light-

ing techniques such as Bernardini 4 allow the recovery of

albedo and normal maps for more accurate rerendering of

an object in new lighting conditions. However, we chose an

uncontrolled lighting solution to reduce the system cost and

simplify image acquisition.

An alternative to explicitly modeling the surface re-

flectance properties is to use an image based rendering ap-

proach. Macmillan describes such a technique where images

of an object are acquired from multiple viewpoints and with

multiple lighting conditions 5. This approach can produce

very high quality results but is not well suited for producing

small sized models suitable for low bandwidth applications.

The image acquisition step is also expensive and potentially

slow. Proprietary image-based solutions such as QTVR suf-

fer from large file size and also require large numbers of

input images to ensure smooth viewpoint changes when ro-

tating the model.

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

Baumberg et al / 3D S.O.M.

2. System Overview

In order to engineer a reliable commercial modelling system

we chose to base our solution on two well understood simple

techniques – a calibration object is introduced into the scene

and we use a “shape from silhouettes” approach.

To automate silhouette detection we utilise a uniformly

coloured backdrop placed behind the object. The segmen-

tation is further improved with the novel use of a stand to

separate the object from the calibration object.

To summarise, the main steps involved in the system are

as follows:

1. Photograph object - The object is placed on a stand on

a planar calibration mat with a coloured backdrop placed

behind the object. The object and stand are then rotated

by hand and around 15 to 50 photographs taken of the

object from various different angles.

2. Estimate Cameras - As the calibration mat and object

are moved together, we can estimate the camera param-

eters (intrinsics and extrinsics) in a global object-centred

coordinate frame for each view. The mat has been care-

fully designed with easily detectable features (see sec-

tion 3.1).

3. Detect Binary Silhouettes - The coloured backdrop is

automatically detected and the remaining image is la-

belled as foreground for each view. The segmentation

scheme is a fairly standard colour-key technique 6.

4. Generate Surface Mesh - The surface model is gener-

ated using a “shape from silhouettes” approach. We have

implemented a novel batch method for fast and efficient

calculation of the exact “Visual Hull” (see section 4).

5. Texture Map Generation - We have implemented a ro-

bust and efficient technique for blending the image data

to generate a consistently textured model without an as-

sociated loss of texture detail (see section 5).

The system is semi-automatic allowing the user to re-

cover from individual component failures or shortcomings.

We have provided an easy-to-use, simple GUI that provides

additional editing functionality.

3. Estimating the Cameras

3.1. The 3D S.O.M. Calibration Target

We require a calibration target which can be placed in a

scene to enable the accurate and robust recovery of the un-

known camera parameters.

Previously seen targets (e.g. Niem 1, Gortler 7) require

coloured features (less reliably detected in uncontrolled

lighting) or complicated detection schemes. Niem for ex-

ample requires the reliable detection of thin line features

which can easily become obscured by shadows, highlights

etc. The Niem pattern consists of two concentric thin cir-

cles joined with radial line segments printed on a coloured

background. A complex non-linear ellipse fitting scheme is

required along with robust line fitting with pairs of oppo-

site line segments. A major drawback of Niem’s approach

is that an erode-dilate operator is used to separate the mat

pattern from the object silhouette which prohibits thin struc-

tures in the object silhouettes being successfully modelled.

Similarly, Gortler requires the accurate detection of dark-

cyan thin circles on a light-cyan background.

In contrast our target consists of very simple features that

can be reliably detected with a very straight-forward detec-

tion scheme. The main design criteria were – Accurate fea-

ture detection, Robust to lighting variation, Robust to object

and background detail, Low cost.

Figure 1: 3D S.O.M. Calibration Target

The target is shown in figure 1. We used a planar target be-

cause it is cheap. The target can be printed using an ordinary

black and white printer.

The pattern consists of 15 groups of 4 dots arranged ra-

dially around a large circle. Dots are used because they are

easy to identify, even when projected arbitrarily. The size

and number of dots is a compromise between larger features

(easier to detect) and a large number of features (give a better

estimate of the camera parameters).

Groups are used to distinguish between dots on the object

(or background) and the dots on the target - dots are com-

mon, sets of four dots are rare. A line of four dots is used

because this feature also possesses a projective invariant, the

cross-ratio.

3.2. Detection Algorithm

The target is detected in an image using the following steps,

• Detect Dark Blobs

c© The Eurographics Association 2003.

42

Baumberg et al / 3D S.O.M.

• Cluster Blobs

• Centre Voting

• Label Groups and Output Correspondences

which are described in more detail in the following sections.

3.2.1. Detect Dark Blobs

Dots are dark on light, therefore for a pixel with colour

(R,G,B) it is part of a dot if each component has intensity

less than 50%. This gives a binary image with 1 where there

are dots (and other dark objects) and 0 elsewhere.

A standard 4-connected region labeling algorithm is used

to extract blobs from the binary image. The algorithm keeps

track of the number of pixels N and the sums of the x-

coordinates ∑x and y-coordinates ∑y to determine the cen-

troid (∑x/N,∑y/N) and area N of each dot.

3.2.2. Cluster Blobs

A B C D

Figure 2: Cluster Cross Ratio And Proximity

Typically there will be several hundred blobs found in the

thresholded image, whereas at most 60 are of interest to us.

Object and background blobs are eliminated by clustering

blobs into sets of four which lie on a straight line. Addi-

tionally, the cross ratio (a projective invariant) of the points

(shown in figure 2) is known,

cross ratio =
AC

AD
:

BC

BD
=

2

3
:

1

2
(1)

and this is a powerful test for rejecting accidentally aligned

dots. A further criterion is that there should only be two dots

between the endpoints i.e. within both circles in figure 2

which approximate a 4×1 ellipse.

3.2.3. Centre Voting

To determine the orientation of the clusters (2-way rotational

ambiguity) we need to know the centre of the big circle (very

approximately). This is done using a voting method similar

to the Hough transform. Each cluster votes for all the points

on a line through the blob centres. The point in the (20 times

subsampled) accumulator with the most votes is determined

to be the centre of the big circle.

The four dots in a cluster are easily ordered so that the

first is the farthest from the centre and the last is the nearest

the centre. At this point we also eliminate clusters (if any)

which do not point towards the centre.

3.2.4. Label Groups and Output Correspondences

Labelling the groups is straightforward. The integer label is
simply given by,

label := (dot1 = big)+2(dot2 = big)+4(dot3 = big)+8(dot4 = big)

where big dots are ones that have an area more than 1.5
times one of their neighbours (the flat area ratio is 2.0) or

have an area less than 1.5 times a neighbour that is known to

be big. This is resolvable because there is a big-big-big-big

group but no small-small-small-small group i.e. each group

has at least one big dot.

Once each cluster has been labelled (1-15) we generate a

table of matches between 3D mat coordinates (z = 0) and 2D

image coordinates.

3.3. Camera Parameter Estimation

The matches obtained are then used as input to a RANSAC

based camera solver module which determines the camera

focal length and extrinsics.

3.4. Results

Figure 3: Identified Features

Figure 3 shows an example of the features detected. White

squares indicate big dots and red squares indicate small dots.

In this example 48 features have been found with no outliers

- this is the typical performance on a very large range of

examples. Note that all the dark blobs on the toy dog ob-

ject have been rejected as target features by the pattern con-

straints.

On a test set of 131 images taken over a wide range of

locations, times and lighting conditions we found only 3 im-

ages with incorrect clusters detected. These clusters were

c© The Eurographics Association 2003.

43

Baumberg et al / 3D S.O.M.

then rejected by the RANSAC camera solving. In a further

4 images, the system failed to detect a significant number of

mat features (due to poor lighting) and these images were re-

jected by the system. For the images with no incorrect clus-

ters detected we obtained an accuracy of between 0.5 and

1.5 pixels (root mean square projection error). The image

sizes varied from 800×600 up to 2160×1440.

4. Efficient and accurate shape from silhouettes

4.1. Background

Many 3D modeling systems use the "shape from silhouette"

approach to computing the shape of an object from a set of

images taken from known positions 1. The approach uses

the "visual hull" approximation to the shape, which is the

maximum volume that reproduces all the silhouettes of an

object 8. A good approximation to the visual hull can be

obtained by intersecting the back-projection of a finite set

of silhouette images. The shape from silhouette approach

is therefore capable of producing robust results in a wide-

baseline system, where obtaining feature correspondences is

difficult, and incorporates information from multiple images

in a natural way.

4.2. Previous work in this area

There are two commonly used approaches to generating a

mesh representation of the visual hull - Volumetric sam-

pling and Direct Intersection.

The volumetric sampling approach typically uses a voxel

grid surrounding the object to produce a "voxel carve" 9.

The voxels are often stored in an octree structure to speed

up calculations. Nodes in the octree are projected into the

silhouette images to determine if they are fully inside or

outside the visual hull. In this way a volumetric represen-

tation of the visual hull is generated. The volumetric rep-

resentation is then converted to a boundary representation

using the Marching Cubes algorithm 10 or simply smoothing

the mesh obtained from the visible node faces. Approaches

based on voxel carving have the problem that, due to the use

of a regular grid, there are often severe aliasing artifacts at

sharp features on the extracted surface (see Figure 4). An ad-

ditional problem with volumetric sampling methods is that

they tend to generate models containing an excessive num-

ber of faces and vertices. When run with a high-resolution

grid these methods are computationally expensive, requiring

a large memory overhead.

Direct intersection avoids these problems by directly gen-

erating a polygonal mesh representation of the visual hull

without using a regular grid 11. This is generated by first

approximating each silhouette by a polygon and then back-

projecting each polygonal silhouette to form a set of "poly-

gon cones". The polygon cones are then intersected in a pair-

wise fashion. This generates the visual hull incrementally.

(a) (b) (c)

Figure 4: Drawbacks of the volumetric sampling approach: (a)

Example image, (b) Close-up of long thin structure on mesh pro-

duced by volumetric sampling has aliasing effects, (c) Close-up of

mesh produced by direct intersection.

4.3. SAVANT: Batch Visual Hull

We have found that the incremental calculation of the visual

hull is often too time consuming for a large number of com-

plex silhouettes. This is because the complexity of adding a

new silhouette increases as the number of faces and vertices

of the current polyhedral approximation of the visual hull in-

creases. In addition the method involves computing a large

number of intermediate vertices that may be later discarded

by intersecting the polyhedron with the new polygon cone.

We have implemented a new approach called SAVANT

(“Silhouette Approximation, Vertex ANalysis and Triangu-

lation”) which takes into account all the polygon cones si-

multaneously.

Every vertex in the final model can only arise from the in-

tersection of 3 of the polygon cone faces, and the intersection

must lie inside all the polygon cones. Hence, we could gener-

ate the complete set of candidate vertices by back-projecting

and intersecting triples of polygon edges, and only keep the

candidate vertices whose projection is inside the silhouette

in all of the images. However this is extremely computation-

ally expensive (of the order n3 in the total number of polygon

edes n).

SAVANT is a new algorithm for efficiently computing the

boundary representation of the visual hull. The steps in the

SAVANT algorithm are as follows:

1. Approximate the silhouettes with polygons and give each

polygon edge a unique ID.

2. Calculate the vertices of the visual hull and label them

with triples of IDs.

3. Generate the polygon faces of the visual hull.

The SAVANT algorithm makes step (2.) efficient by search-

ing for the vertices of the visual hull using a combination

of a bottom-up search with a top-down spatial subdivision

to prune the search. This makes the algorithm for batch vi-

sual hull computation practical, even for a large number of

complex silhouette images.

The next sections describe the steps involved in more de-

tail.

c© The Eurographics Association 2003.

44

Baumberg et al / 3D S.O.M.

4.4. Calculating the vertices

4.4.1. Finding the initial volume

An initial volume needs to be defined which encloses the

visual hull. Since SAVANT uses projections of 3D regions

into the images to infer information about what is contained

within the region, the initial volume needs to lie completely

in front of all of the camera optical centers.

One way to define the initial volume is to define it as the

union of a set of cubes. We start from an intial cube that

encloses the scene. We then recursively subdivide any cubes

which are not totally in front of all the cameras and discard

those that lie totally behind any camera until all the cubes

are in front of all the cameras or a minimum size is reached.

4.4.2. Processing cubes

The region being processed consists of a set of cubes stored

in a stack. A cube is taken from the stack and is then ei-

ther subdivided, discarded, or the vertices within it are cal-

culated, on the basis of the projections of the cube into the

silhouette images. If a cube is subdivided its children are

placed onto the stack. The calculation terminates when there

are no more cubes on the stack.

In the simplest version of the algorithm we carry on sub-

dividing cubes until there is at most one candidate vertex in

the cube. To determine whether there is a candidate vertex in

the cube we note that each vertex arises from the intersection

of 3 of the polygon cone faces and it must lie within all of

the other polygon cones. We therefore count the total num-

ber of polygon cone faces that intersect the cube. This can be

done by projecting the cube into all of the images and count-

ing the total number of polygon edges that intersect with the

projections of the cube.

There is one candidate vertex if both the following condi-

tions hold:

1. There are exactly 3 polygon edges that intersect with the

projection of the cube, involving edges in at least 2 im-

ages.

2. There are no images in which the projection of the cube

is completely outside the silhouette.

The two cases for condition (1.) that need to be considered

are shown schematically in Figure 5.

Before a candidate vertex can be accepted, the algorithm

needs to calculate whether the back-projections of the 3

polygon edges intersect, and if they do intersect, whether

the intersection point is within the cube. This is the only 3D

test that needs to be done. If the intersection point lies within

the cube then we have found a true vertex of the visual hull.

The vertex is stored (i.e. its position and the labels of the 3

polygon edges which generated it) and the cube is then dis-

carded.

Cubes that do not contain a single candidate vertex are ei-

ther subdivided or discarded according to the following rule:

.....

 All the other images

Image 2 Image 1

Case A: vertex from 2 images

Case B: vertex from 3 images

Image 2 Image 3 Image 1

Image 3

.....

 All the other images

Figure 5: Two cases that generate a vertex.

Any cube that has less than 3 planes intersecting it is dis-

carded, as it cannot contain a vertex of the visual hull. In

addition, any cube whose projection in any of the images is

outside the silhouette is also discarded, as it must then lie

entirely outside the visual hull. Also, if the projected cube

intersects with polygon edges only in a single image then

the cube is discarded, as the intersection of the polygon cone

faces would be at the optical center, which is assumed to be

outside the initial region. If none of these conditions holds,

the cube is subdivided. In its simplest version, the cube sub-

division produces 8 child cubes, which are placed on the

stack. The calculation continues until the stack is empty.

There are a number of ways of speeding up the search, for

example utilising the fact that if a cube projects completely

inside a silhouette then this will be true for all of it’s child

cubes and enumerating all possible triples of edges if the

number of edges intersecting a cube is less than a threshold

(see our previous work 12 for details). For efficient intersec-

tion testing the silhouette edges are stored in a quad-tree data

structure.

4.5. Wiring up the vertices

The polygon faces are now obtained by using the labels as-

sociated with each hull vertex to traverse the edges around

each face in order. For example, if the visual hull planes are

labeled A,B,C,..., and we are traversing the polygon face as-

sociated with plane A, then after connecting vertex A,B,C

to A,B,D, along the A,B edge, the next vertex must lie on

the A,D edge, i.e. it must be A,X,D for some new plane X.

The new plane is found, suppose it is F, then the next ver-

tex must lie on the A,F edge, and so on until we return to

vertex A,B,C. This traversal connects the vertices into sets

of polygon faces i.e. it generates a boundary representation

of the visual hull. There are some special cases as there is

sometimes an ambiguity that needs to be resolved 12. Finally

the polygons can be triangulated.

c© The Eurographics Association 2003.

45

Baumberg et al / 3D S.O.M.

Figure 6: Example data sets

4.6. Visual Hull Results

We carried out tests comparing the runtime performance of

the SAVANT visual hull algorithm with an optimised incre-

mental visual hull algorithm (detailed description 12). We ob-

served how the performance depends on the complexity of

the model and on the number of images in the sequence. All

timings were obtained using a 650MHz Pentium III PC with

128MB memory. The tests used automatically segmented

silhouettes from images taken using a conventional digital

camera. Figure 6 shows typical examples of the data sets

used and the meshes obtained (rendered with smooth shad-

ing).

A table comparing the timings for the two algorithms for

each of these examples is shown in Table 1. For a very sim-

ple example, such as the Duck, the two algorithms perform

similarly. The other two examples, which are more complex

than the Duck example, show that SAVANT performs be-

tween 3-5 times faster than the incremental algorithm.

Duck Helmet Fan

Number of images 15 31 88

Input polygon edge count 1666 7656 28412

Output model triangle count 6188 23956 15028

Incremental algorithm timing 16.1s 519s 921s

SAVANT algorithm timing 15.8s 102s 282s

Table 1: Comparison of algorithm performance

A more detailed breakdown of comparative performance

is given in our previous work 12. A typical result showing

how SAVANT (or direct intersection) compares to a volu-

metric approach is shown in Figure 4.

5. Extracting the textures

5.1. Background

In practice the measured colour and intensity for a surface

element observed in different photographic images will not

agree. This is due to the interaction between real world light-

ing effects (such as highlights) and variations in the camera

gain settings as well as registration and surface modelling

errors.

A common approach for blending image data for textur-

ing is to use a triangle-based scheme 1, 13. In general these

techniques rely on a regular triangular mesh model (with a

fairly uniform size and shape for each triangle). Each trian-

gle is assigned to the "best" camera by considering the view-

ing angle and visibility. Blending is restricted to the bound-

ary triangles and simple weighted averaging used to "blur"

the seams. The size of the transition region across seams is

crucial. If the transition region is small the seams between

regions will only be slightly blurred and still visible. If the

transition region is too large, this results in blurring away

high frequency detail and ghosting.

An alternative to triangle based schemes is to use per-

pixel weighted filtering schemes 4, 14. For example, Pighin

et al describe a system for generating 3D face models from

photographs 14. Cylindrical weight maps are constructed for

each camera image that satisfy a number of requirements –

visibility (zero weight for hidden surface points), smooth-

ness (the weights should vary smoothly), positional cer-

tainty (oblique views have less weight). The images are then

blended by weighted averaging to produce the final texture

map. Similarly, Bernardini 4 blends albedo and normal tex-

ture data obtained from multiple structured light 2.5D scans.

We have developed a new multi-band 3D "splining" ap-

proach to preserve high-frequency detail in the transition re-

gions of the surface textures. (The classical 2D image splin-

ing approach is described by Burt and Adelson 15).

5.2. Texture representation

There are many possible ways to represent the texture data

for an arbitrary surface. Our algorithm does not require any

specific texture representation. We currently use a combina-

tion of 6 orthographic views of the object from “canonical”

viewpoints (front, back etc) and a packed set of padded trian-

gle strips to represent the triangles that were not fully visible

from any canonical view. For each triangle on the mesh we

have a unique triple of 2D texture coordinates.

5.3. Outline of 3D multi-band blending

The approach we take is to process each camera image se-

quentially. We generate a smooth weight function across the

surface for each camera which we represent using an image-

based representation in the camera image frame. The input

c© The Eurographics Association 2003.

46

Baumberg et al / 3D S.O.M.

camera image data is divided into several frequency bands

and each band projected into the texture map representation

along with the weight function. We blend each band in the

texture map representation separately using different (pixel-

wise) filters. The low-frequency data is blended using a sim-

ple linear averaging filter whereas the high-frequency data

is blended with a non-linear ("maximum weight") filter. Fi-

nally, the texture map bands are recombined to generate the

final texture map.

The key idea here is that we wish to average the low-

frequency information from all cameras (to even out lighting

variation) but preserve the high-frequency information from

the best view (to preserve image sharpness).

5.4. Building a camera weight function

The first step in our algorithm is to build a smooth weight

function for each camera. By construction our weight func-

tion will only be non-zero for visible parts of the surface.

Hence we can represent the non-zero part of the weight func-

tion using a camera image based representation. We build a

greyscale weight image in the camera frame which is then

applied to the surface using texture mapping. The weight

image is constructed by rendering each triangle flat-filled

with an intensity proportional to the texture resolution. The

weight image is then blurred to ensure it is smooth. Care

must be taken to ramp down the weights near occlusion

edges (see our previous work 16 for details).

5.5. Blending the images

Once the camera weight function is constructed it is pro-

jected into the texture image representation by texture map-

ping. Additional care needs to be taken to ensure that the

hidden parts of the surface are given zero weight. This is

achieved by building a separate masked weight “sub-image”

for each partially visible triangle.

The low-frequency camera image is generated by bluring

the input camera image. The size of the blur kernel can be

determined by mapping a threshold in world units (e.g. 5%

of object size) into camera image units. The high-frequency

image is a signed image obtained by subtracting the low-

frequency image from the original image. These images are

now projected into the texture image frame using standard

texture mapping.

A low-frequency texture image is maintained using a

weighted average filter to blend the projected low-band im-

ages. Similarly the high-frequency signed texture image is

updated using a “maximum weight” filter (for each pixel

keep the signed colour value with the maximum associated

weight).

Once all the input images are processed the low and high-

frequency texture images are recombined by simple addi-

tion. The method can be summarised by the following equa-

tion:

J(u,v) =
∑k λk(u,v)I k

low(u,v)

∑k λk(u,v)
+∑

k

µ
k(u,v)I k

high(u,v)

where J(u,v) is the output texture map image, I k
low is the

k’th low frequency image (Gσ · I
k) projected into the texture

domain, I k
high is the high frequency image (I k −Gσ · I

k) pro-

jected into the texture domain and λk(u,v) is the projected

smooth weight function for the k’th input camera image. The

high frequency filter weights µk are defined by:

µk =

{

1 if λk > λi ∀i 6= k

0 otherwise

The final texture image can then be used to render the tex-

tured surface model from any viewpoint.

5.6. Results of texture blending

In order to demonstrate our algorithm we used a "doll" test

sequence of 16 images taken of a china doll model. The vi-

sual hull model generated contained 4,000 triangles. We also

used a further "dino" test sequence of a toy dinosaur with 25

camera images and 10,000 triangles in the mesh model. We

compared the multiband technqiue with two simpler tech-

niques that utilise the same image-based weight maps - Av-

eraging and Best camera. For “averaging”, a single band is

used and the texture data combined using weighted averag-

ing. For the “best camera” scheme, the camera pixel with the

highest associated weight is used for each texture map pixel.

(a) (b) (c) (d)

Figure 7: Novel views of textured models: (a) “best camera”

scheme for doll has noticeable seams, (b) multiband scheme for doll

is sharp and seamless, (c) “averaging” scheme for dino is blurred,

(d) multiband scheme for dino is sharp and seamless.

Figure 7 shows the textured mesh for the "china doll" and

"dino" input sequences. From these images it is clear that

the "averaging" approach can suffer from blurring due to

camera misregistration and shape modeling errors. The "best

camera" method gives crisper textures but can suffer from

seams due to lighting inconsistencies between input cam-

era images. However, our multiband technique gives a good

compromise between these two extremes. Typically the time

taken is 2-3 minutes on a 800MhZ PC.

c© The Eurographics Association 2003.

47

Baumberg et al / 3D S.O.M.

6. Results

Although there are obvious limitations with silhouette

based surface reconstruction (e.g. modelling concavities)

we have found that the synthesised views of the texture

mapped model are suprisingly convincing. Figure 8 shows

some typical examples of novel views obtained in 3D

S.O.M. next to a typical input camera image. More ex-

ample models are available from the 3D S.O.M. web site

(http://www.cre.canon.co.uk/3dsom).

7. Conclusions

We have described a software solution to 3D scanning from

photos. Our approach has been to make minimal assump-

tions about the object and scene lighting by introducing a

robust calibration object and utilising an efficient “shape

from silhouettes” technique to improve robustness and per-

formance. The key novel contributions of this work are - ro-

bust camera estimation using a carefully designed calibra-

tion target, batch visual hull calculation that extends the sil-

houette approach to large numbers of complex silhouettes

and multi-band texture blending to ensure consistent look-

ing textured models without loss of detail. Future work will

look at extending the system to handle concavities and im-

provements to model quality.

Figure 8: 3D models generated next to example input images

8. Acknowledgements

The authors wish to thank Simon Rowe and Qi He Hong for useful

discussions and comments and Canon Inc. for funding the work.

References

1. W. Niem. Automatic reconstruction of 3d objects using a mo-

bile camera. Image and Vision Computing, 17(2):125–134,

February 1999.

2. R. Koch, M. Pollefeys, and L.J. Van Gool. Multi viewpoint

stereo from uncalibrated video sequences. In ECCV98, pages

55–71, 1998.

3. S.M. Seitz and C.R. Dyer. Photorealistic scene reconstruction

by voxel coloring. In CVPR97, pages 1067–1073, 1997.

4. F. Bernardini, I. Martin, and H. Rushmeier. High quality tex-

ture reconstruction from multiple scans. IEEE Trans. on Visu-

alization and Computer Graphics, 7(4), Oct-Dec 2001.

5. W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler,

and L. McMillan. Image-based 3d photography using opacity

hulls. ACM Transactions on Graphics, 21(3):427–437, July

2002.

6. A.R. Smith and J.F. Blinn. Blue screen matting. Computer

Graphics, 30(Annual Conference Series):259–268, 1996.

7. S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen. The

lumigraph. In SIGGRAPH 96 Conference Proceedings, pages

43–54. ACM SIGGRAPH, August 1996.

8. A. Laurentini. The visual hull concept for silhouette based im-

age understanding. IEEE Trans. Pattern Analysis and Machine

Intelligence, 16(2):150–162, 1994.

9. Richard Szeliski. Rapid octree construction from image se-

quences. CVGIP: Image Understanding, 58(1):23–32, July

1993.

10. W. Lorensen and H. Cline. Marching cubes: a high resolu-

tion 3D surface construction algorithm. Computer Graphics,

21(4):163–169, July 1987. Proceedings of SIGGRAPH’87

(Anaheim, California, July 1987).

11. W. Matusik, C. Buehler, and L. McMillan. Polyhedral visual

hulls for real-time rendering. In Proceedings of the 12th Eu-

rographics Workshop on Rendering, pages 115–125, London,

England, June 2001.

12. A. Lyons, A. Baumberg, and A. Kotcheff. Savant: A new effi-

cient approach to generating the visual hull. In Short Presen-

tations Proceedings of Eurographics, pages 18 – 28, 2002.

13. H. Lensch, W. Heidrich, and H. Seidel. A silhouette-based al-

gorithm for texture registration and stitching. Graphical Mod-

els, 63(4):245–262.

14. F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. Salesin.

Synthesizing realistic facial expressions from photographs. In

SIGGRAPH 98 Conference Proceedings.

15. P. J. Burt and E. H. Adelson. A multiresolution spline with

application to image mosaics. ACM Transactions on Graphics,

2(4):217–236, October 1983.

16. A. Baumberg. Blending images for texturing 3d models. In

British Machine Vision Conference (BMVC), pages 404–413,

2002.

c© The Eurographics Association 2003.

48

