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Abstract

In this paper we explore how spectral methods for graph seriation can be used to develop a new shape-from-
shading algorithm. We characterise the field of surface normals using a transition matrix whose elements are
computed from the sectional curvature between different image locations. We use a graph seriation method to
define a curvature minimising surface integration path for the purposes of height reconstruction. To smooth the
reconstructed surface, we fit quadric patches to the height data. The smoothed surface normal directions are
updated ensuring compliance with Lambert’s law. The processes of height recovery and surface normal adjustment
are interleaved and iterated until a stable surface is obtained. We provide results on synthetic and real-world

imagery.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Image Processing and Computer Vision]:

Spectral-graph methods, shape-from-shading

1. Introduction

Graph spectral methods have recently found widespread use
in computer vision. Concrete examples include the use of
normalised cuts for image segmentation !, the use of matrix
factorisation methods for correspondence matching 2 and
spectral encodings for shock-graph indexation and retrieval
3. Most of these methods use eigenvectors for the purposes
of clustering. However, graph-spectral methods can also be
used to solve path-based problems. The most familiar exam-
ple here is the minimum linear arrangement problem, which
involves placing the nodes in a graph in an order which min-
imises the total edge length. A related task is the graph se-
riation problem #, which involves ordering the set of nodes
in a graph in a sequence such that strongly correlated ele-
ments are placed next to one another. There are many prob-
lems in computer vision that could potentially be posed as
graph-seriation. In low and intermediate level vision, con-
tour grouping can be posed as the task of finding a curve
of minimum length and curvature across of pixel lattice. At
higher levels of abstraction path planning tasks such as the
travelling salesman problem, can be posed as finding a min-
imum length path on a graph.

The seriation problem can be approached in a number of
ways. Clearly the problem of searching for a serial order-
ing of the nodes, which maximally preserves the edge order-
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ing is one of exponential complexity. As a result approxi-
mate solution methods have been employed. These involve
casting the problem in an optimisation setting. However, re-
cently a graph-spectral solution has been found to the prob-
lem. Atkins, Boman and Hendrikson 4 have shown how to
use an eigenvector of the Laplacian matrix to sequence rela-
tional data. The method has been successfully applied to the
consecutive ones problem and a number of DNA sequencing
tasks.

In this paper our aim is to exploit graph-spectral seriation
for a problem from intermediate level vision. The problem
chosen is surface reconstruction using shape-from-shading.
The original work on shape-from-shading adopted a vari-
ational approach and aimed to recover surface normal di-
rections by applying Euler’s method to a regularised energy
function 3. There have since been a multitude of papers at-
tempting to improve the method and render it useful for prac-
tical shape-analysis tasks (for a good recent review, see the
comprehensive comparative study of Zhang et al ©). How-
ever, recently there has a consolidated effort in the literature
aimed at overcoming the well documented problems with
shape-from-shading. One of the most important of these is
the method of Dupuis and Oliensis 7 which does not use
regularisation and has been proved to reconstruct height in-
formation correctly from intensity data. The method propa-
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gates surface normals in the steepest downhill direction from
singular points on the surface. Bichsel and Pentland 8 have
developed a fast variant of the method. Worthington and
Hancock have developed a new framework for shape-from-
shading  in which the image irradiance equation is treated
as a hard constraint. They have also shown how curvature
consistency constraints can be used to recover meaningful
topographic surface structure. According to this geometric
framework, the surface normals are constrained to fall on
an irradiance cone whose axis is in the light source direction
and whose apex angle is proportional to the inverse cosine of
the measured image brightness. The azimuthal angle of the
surface normal on the irradiance cone is determined by local
smoothness contraints. However, the method only delivers
fields of surface normals and height recovery requires a sur-
face integration algorithm to be applied as a postprocessing
step.

We use the graph-spectral seriation method to develop a
shape-from-shading algorithm. We commence with the sur-
face normals on their irradiance cones pointing in the direc-
tion of the image gradient. The vector field is characterised
as a weighted graph using an affinity matrix whose elements
are determined using the sectional curvature between loca-
tions in the field of surface normals. We recover a curvature
minimising path through the field of surface normals by per-
forming an eigenvector analysis on the affinity matrix. By
traversing this path we perform height reconstruction by ap-
plying the trapezoid rule to the surface normal directions.
Surface smoothing is effected by fitting quadric patches to
the height data. The patch-fits also allow refined estimates
of the surface normals to be made. The image irradiance
equation may be imposed by projecting these surface nor-
mals onto the irradiance cones. The algorithm may hence be
iterated until convergence is reached.

2. Lambertian Reflectance

In the case of Lambertian reflectance from a matte surface of
constant albedo illuminated with a single point light-source,
the observed intensity is independent of the viewing direc-
tion. The observed intensity depends only on the quantity of
absorbed light, and this in turn is proportional to the cosine
of the incidence angle. Suppose that L is the unit-vector in
the direction of the light source and that Nj is the unit-vector
in the surface normal direction at the pixel i. According to
Lambert’s law, the observed image intensity at the pixel in-
dexediis E;= Ni L.

Lambert’s equation provides insufficient information to
uniquely determine the surface normal direction. However,
as recently observed by Worthington and Hancock ?, the
equation does have a simple geometric interpretation which
can be used to constrain the direction of the surface normal.
The equation specifies that the surface normal must fall on
the surface of a right-cone whose axis is aligned in the light-
source direction L and whose apex angle is arccos(E). We

can use this constaint to acquire intial surface normal direc-
tions. The surface normals are placed on the position on the
irradiance cone where their projections onto the image plane
are aligned in the direction of the local (Canny) image gra-
dient.

3. Integration Path from Graph Spectral Seriation

We provide a graph-spectral characterisation of the field of
surface normals by computing an affinity matrix whose ele-
ments are given by W; ; = exp[—BK,%jl,-’j] where ¥; ; is the
sectional curvature between points i and j and [; ; is the
length of the connecting path. The curvature can be approax-
imated using the surface normal directions N; and N’ j at the
locations i and j. Assuming that the underlying surface is

approximately circular we find that
Ki2,j = w (1)

i,j

Our aim is to find a curvature minimising path through the
field of surface normals by performing an eigenvector anal-
ysis of the matrix W, and to use this path for surface height
recovery. To commence, we pose the problem in a graph-
based setting. The set of pixel sites can be viewed as a
weighted graph G = (V,E,W) with index-set V, edge-set
E = {(i,)|(i,j) € VxV,i# j} and weight function W :
E — [0,1]. Let the curvature minimising path commence at
the node j; and proceed via the sequence of edge-connected
nodes I' = {j1, j2, J3,...} where (j;, ji—1) € E. Further, we
suppose that the transition weight matrix W (j;, ji+1) asso-
ciated with the move between the nodes j; and j;| can be
regarded as a pairwise similarity measure. With these ingre-
dients, the problem of finding the path that minimises the
curvature between adjacent pixel-sites can be viewed as one
of seriation, subject to edge connectivity constraints.

As noted by Atkins, Boman and Hendrikson 4, many ap-
plied computational problems, such as sparse matrix en-
velope reduction, graph partitioning and genomic sequenc-
ing, involve ordering a set according to a permutation T =
{n(j1),n(j2);---,7(jjv|)} so that strongly related tokens
are placed next to one another. The seriation problem is
that of finding the permutation 7 that satisfies the condi-
tion m(j;) < 7(ji) < T(jr) = {W(i.k) = W(i, 1) AW (k1) >
W (i,l)} This task has been posed as a combinatorial opt-

misisation problem which involves minimising the penalty
function g(nt) = lell Z,L‘;ll W (i, k) (m(ji) — n(jk))2 for a set

of N elements and a symmetric, real transition weight matrix
w.

Unfortunately, the penalty function g(7), as given above,
does not impose edge connectivity constraints on the order-
ing computed during the minimisation process. Furthermore,
it implies no directionality in the transition from the node
indexed j; to the one indexed j;1 . To overcome these short-
comings, we turn our attention instead to the penalty func-
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tion
V|—1 R
gm= Y Wi+ 1)(n(ji) —n(ji1)) (€)
i=1
where the nodes indexed j; and j; | are edge connected. Af-
ter some algebra, it is straightforward to show that
[v]-1 ) )
g(m) =Y Wi+ 1)(n(j)”+n(ji1)7)—
i=1
[Vi-1
2 Y, Wi+ D)n(j)m(ji)
i=1

3

It is important to note that g(m) does not have a unique
minimiser. The reason for this is that its value remains un-
changed if we add a constant amount to each of the co-
efficients of w. We also note that it is desirable that the min-
imiser of g(m) is defined up to a constant A whose solutions
are polynomials in the elements of W. Therefore, we subject
the minimisation problem to the constraints

\4! V|
am(ji)? = Y, Wkim(jy)> and Y, m(ji)* #0 (@)
k=1 k=1

Since the co-efficients 7(j;; 1) are inversely proportional
to A — W (i+ 1,i), the co-efficient 7( ji_H)2 increase with
decreasing sectional curvature (i.e. the similarity tends to
one). The effect of this is to enforce edge connectivity while
favouring paths of small local curvature, and also to min-
imise the overall cost of the path.

Combining the constraint conditions given in Equation 4
with the definition of the penalty function given in Equa-
tion 3, it is straightforward to show that the permutation

T satisfies the condition Z,L‘;ll ZJZ‘I_I (W (ki) + W (k,i+

N2 Vi—1,_.\2 ) . .
D)r(jr)” = 7»2,'-:‘1 (n(ji)” +m(ji+1)"). Using matrix no-
tation, we can write the above equation in the more compact
form

QW = AQ0 )]

where ¢ = {n(jl)z,n(jz)z, e ,n(jw‘)z}T and Q is the (N —
1) x N matrix

1 1 0 0

o— 0 1 1 P ©)
T
o ... O 1 1

Hence it is clear that locating the permuation 7 that min-
imises g(m) can be posed as an eigenvalue problem, and
that ¢ is an eigenvector of W. This follows from the fact
that Equation 13 can be obtained by multiplying both sides
of the eigenvector equation W¢ = Ad by Q. Furthermore,
due to the norm condition of the eigenvector, the constraint
21@1 w( jk)2 = () is always satisfied. Taking this analysis one
step further, we can premultiply both sides of Equation 5 by
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Figure 1: Results on synthetic images.

¢T to get the matrix equation (I)TQW(I) = M)TQ(]). As aresult,
it follows that
o’ QWo

M=o

@)

This expression is reminiscent of the Rayleigh quotient.
It also suggests the plausibility of using the mathematical
techniques commonly employed to study the asymptotic be-
haviour of non-homogeneous Markov chains !0 to take our
analysis further.

We note that the elements of the permutation 7 are re-
quired to be real. Consequently, the co-efficients of the
eigenvector ¢ are always non-negative. Since the elements
of the matrices Q2 and W are also positive, it follows that
the quantities 4)TQW¢ and (])TQq) are positive. Hence, the
set of solutions reduces itself to those that are determined
up to a constant A > 0. As a result, the co-efficients of the
eigenvector ¢ aTre linearly independent of the all-ones vector
e=(1,1....,1)".

With these observations in mind, we focus on proving the
existence of a permutation that minimises g(m) subject to the
constraints in Equation 4, and demonstrating that this per-
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mutation is unique. To this end we use the Perron-Frobenius
theorem !!. This concerns the proof of existence regard-
ing the eigenvalue A« = max;_;, |y|{A:} of a primitive,
real, non-negative, symmetric matrix W, and the uniqueness
of the corresponding eigenvector ¢«. The Perron-Frobenius
theorem states that the eigenvalue A, > 0 has multiplicity
one. Moreover, the co-efficients of the corresponding eigen-
vector ¢, are all positive and the eigenvector is unique. As
a result the remaining eigenvectors of W have at least one
negative co-efficient and one positive co-efficient. If W is
substochastic, ¢« is also known to be linearly independent
of the all-ones vector e. As a result, the leading eigenvector
of W is the minimiser of g(m).

The elements of the leading eigenvector ¢« can be used
to construct an integration path. As noted earlier the com-
ponents of ¢« decrease with increasing curvature of the se-
riation path. We commence from the node associated with
the largest component of ¢«. We then sort the elements of
the leading eigenvector such that they are both in the de-
creasing magnitude order of the co-efficients of the eigen-
vector, and satisfy neighbourhood connectivity constraints
on the pixel lattice. The procedure is a recursive one that
procedes as follows. At each iteration, we maintain a list of
sites visited. At iteration k let the list of sites be denoted by
Ly. Initially, Lo = j, where jo = argmax; ¢« (), i.e. jo is
the component of ¢+ with the largest magnitude. Next, we
search through the set of 8-neighbours of j, to find the pixel
associated with the largest remaining component of ¢x. If
Nj, is the set of 8-neighbours of jg, the second element in
the list is j; = argmax;e n7;, 0+ (/). The pixel index j; is ap-
pended to the list of sites visited and the result is £;. In the
kth (general) step of the algorithm we are at the pixel site
indexed jj and the list of sites visited by the path so far is
L. We search through those 8-neighbours of j; that have
not already been traversed by the path. The set of pixel sites
is Cy = {I]l € Nj, Al ¢ Ly}. The next site to be appended
to the path list is therefore ji | = argmax;cc, ¢« (I). This
process is repeated until no further moves can be made. This
occurs when Cj, = () and we denote the index of the termina-
tion of the path by 7. The integration path [g is given by the
list of pixel sites L.

4. Extracting Patches

In practice the surface under study may have a patch struc-
ture. The patches may be identified by finding the blocks
of the transition matrix induced under a permutation of the
nodes. We commence by constructing the thresholded tran-
sition matrix A whose elements are defined as follows

. o0 if P(i, j) << 1
AlL.]) 7{ P(i,j) otherwise

Suppose that there are m distinct surface patches, each asso-

®)

ciated with an adjacency matrix BY If C represents a noise
matrix, then the relationship between the observed transition

matrix A and the underlying block-structured transition ma-
trix is A = B+ C where B = PBDPT, ‘P is a permutation
matrix and Bp = diag(Bm,B(z)7 ... 7B(")...) is a block diag-
onal matrix in which B is the sub-block corresponding to
the patch indexed i. To recover the matrix Bp, we turn to the
eigenvector expansion of the matrix A and write

- v oy

A=biby+ Y, Nibib; ©9)
i=2

where the leading eigenvalue is unity i.e. A} = 1, b is the
leading eigenvector and the eigenvectors are normalised to
be of unit length, i.e. |b;| = 1. To identify the patches, we use
the following iterative procedure. We initialise the algorithm
by letting A" = A. Further suppose that ng is the leading
eigenvector of AW The matrix B = I;S})Zil)T represents
the first block of A. The nodes with non-zero entries belong
to the patch. These nodes may be identified and removed
from further consideration. To do this we compute the resid-
ual transition matrix A?) = A1) — B in which the ele-
ments of the first patch are nulled. The leading eigenvector
59 of the residual transition matrix A is used to compute
the second block B®?) = BSKZ)B(*Z)T. The process is repeated
iteratively to identify all of the principal blocks of A. At it-

eration n, Bi") is the leading eigenvector of the residual tran-

sition matrix A™, and the n'" block is B™ = B(*n)l;i") T The
index set of the patch indexed # is the set of nodes for which

the components of the leading eigenvector Ei") are non-zero.

Hence, the index-set for the i'" patch is §; = {k\B@ (k) #0}.
It is important to stress that the patches are non-overlapping,
i.e. the inner product of the block eigenvectors for different

patches is zero ng .BS!) =0, where k # [.

ERROR AS A FUNCTION OF THE VARIANCE
24 T T

DOME
RIDGE

TORUS -
22 MOLGANO -
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Figure 2: Plot of the error percentage as a function of the variance
for the four synthetic basic shapes.
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5. Height Recovery

Our surface height recovery algorithm proceeds along the se-
quence of pixel sites defined by the order of the co-efficients
of the leading eigenvector associated with the separate
patches. For the k' patch, the path is Ty = (j,i,j,%,j,%, )
As we move from pixel-site to pixel-site defined by this path,
we increment the surface height-function. In this section, we
describe the trigonometry of the height incrementation pro-
cess.

At step n of the algorithm, we make a transition from the
pixel with path-index j,_ to the pixel with path-index j,.
The distance between the pixel-centres associated with this
transition is

do= /(3 —xj, 2+ i, =i 2 (10)

This distance, together with the surface nor-
mals  Nj = (N (x),N;,(y),Nj,(z)) and Nj_, =
(Nj,_, (x),N;,_, (v),N;,_,(2)) at the two pixel-sites may be
used to compute the change in surface height associated

with the transition. The height increment is given by

_ dl{Njn (x) Nj,_, (x) }
2 N, Nj ()

If the height-function is initialised by setting z;, = 0, then
the centre-height for the pixel with path-index jy is zj,,, =
Zjy, + hn-

I 1)

Once the surface normals that belong to the individual
patches have been integrated together, then we merge them
together to form a global surface. Suppose that Sy is the
integrated surface for the K" patch. We compute the mean
height for the pixels belonging to this boundary. We merge
the patches together by ensuring that abutting patches have
the same mean boundary height.

6. Region Quadric Fitting

Once the height values are availble for each pixel site in a
patch, then we perform smoothing. We do this by fitting a
local quadric to the height data for the patch sites. To do

this we employ a simple least-squares fitting method. Our
aim is to adjust the surface normal directions so that they are
consistent with the gradient of the fitted quadric and also re-
main on their respective irradiance cone. The opening angle
of the corresponding cone will be determined by the gray-
level E; at pixel-site indexed i and the direction of the surface
normal on the image plane will be determined by the gradi-
ent of the fitted quadric. As a result, we can parameterise the
surface normal directions at the kth iteration of the recovery
process using two angles. The first of these is the angle Oi(k)
between the surface normal and the light source direction.
This is simply the opening angle of the irradiance cone, and
this angle must be kept fixed in order to ensure that the re-
covered surface normal satisfies Lambert’s law. The second
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Figure 3: Results of the algorithm on the image of Michelangelo’s
Moses

is the azimuthal angle (p,-(k>, which measures the position of
the surface normal on the irradiance cone.

The angles (pi(k) and Oi(k) can be defined in terms of the

gradient of the local quadric patch Qg,k) (xi,y;) fitted at iter-
ation k projected onto the image plane. Using some simple
geometry, we can write

(k)
90p (%) 5
, JTH a QEJA) rp)
T — arccos 0] if == <0
‘Pi(k) _ . R; i
a0 xp0)
arccos ! otherwise
r; (W)
9;(1{) = arccos(E;) (12)

where R,-(k) is the magnitude of the component of the gradi-
ent on the image plane, which is given by

OV Y
Ri<k) _J an (-xnyl) +an (xu)’t) (13)

ox; 9yi

Once the azimuth and the tilt angles have been computed,
then the surface normals may be obtained using the equa-
tions

k k—1
N = sin(e,-m)cos(w) ifk>1
sin(e,-(k) ) cos(@; (k)) otherwise
U n—1
Ni(y) = sin(ei("))sin( M%(X)) ifn>1
sin(8; ") sin(g; ")) otherwise
Ni) = cos(8;") (14)
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7. Algorithm Description

In this section, we summarise a shape-from-shading algo-
rithm based on the height recovery method described above.
The sequence of processing steps is as follows:

e Step 0: The surface normals are placed in their initial po-
sitions on the irradiance cones. To do this we align them
in the directions of the image gradient. The gradient is
computed by first smoothing the grey-scale image by fit-
ting local quadric patches to the raw image intensity. The
smoothed image gradient is found from the derivatives of
the fitted patch.

e Step 1: From the initial field of surface normals, we com-
pute the sectional curvatures and hence the transition ma-
trix. The blocks of the matrix are surface patches. The
leading eigenvector of the transition matrix for each block
is used to compute the integration path. Using the patch
integration paths, we recover estimates of the surface
height.

e Step 2: For the sites in each patch, we fit a quadric patch to
the available height estimates. The fitted surface patches
are used to compute an estimate of the surface gradient.
At each location, the gradient estimate is used to adjust
the position of the surface normals on their respective ir-
radiance cones.

Steps 1 and 2 are iterated until a stable set of surface
height estimates are located.

8. Experiments

Our experiments with the new graph-spectral method for
shape-form-shading are divided into two parts. We com-
mence with a study based on synthetic data which is aimed
at establishing the noise sensitivity and failure modes of the
method. In the second part of the study we focus on the be-
haviour of the method when confronted with real world data.
Here we study images of classical statues.

8.1. Synthetic Data

In this section we provide some experiments on synthetic
data. The aim here is to determine the accuracy of the surface
reconstruction method. To this end we have generated syn-
thetic surface height data. From the surfaces, we have com-
puted the field of surface normal directions. A light source
direction is then selected and the surfaces have been ren-
dered using the Lambertian reflectance process outlined in
Section 2. We have then applied the graph-spectral shape-
from-shading method to the resulting synthetic images. We
compare the resulting height estimates with the height data
for the original surfaces.

In Figure 1 we show the results obtained for a series of dif-
ferent surfaces. In the first, second and third rows we show
the Lambertian shading, height data and surface normals for
the synthetic surfaces. In the fourth row of the figure we

Figure 4: Views of the reconstructed surface of Michelangelo’s
Moses

show the surface reconstructed by applying our shape-form-
shading method to the images in the top row. The bottom row
of the figure shows the absolute error between the ground-
truth and reconstructed surface height. From left-to-right the
surfaces studied are a dome, a sharp ridge, a torus and a vol-
cano. In all four cases the surface reconstructions are qualita-
tively good. For the dome the height errors are greater at the
edges of the surface where the slope is largest. In the case of
the ridge, there are errors at the crest. For the volcano, there
are some problems with the recovery of the correct depth of
the “caldera”, i.e. the depression in the centre. For the re-
constructed surfaces, the mean-squared errors are 5.6% for
the dome, 10.8% for the ridge, 7.8% for the torus and 4.7%
for the volcano. Hence, the method seems to have greater
difficulty for surfaces containing sharp creases.

We have repeated these experiments under conditions of
controlled noise. To do this we have added random measure-
ment errors to the raw image brightness. The measurement
errors have been sampled from a Gaussian distribution with
zero mean and known variance.

To investigate the effect of noise further, in Figure 2 we
plot the mean-squared error for the reconstructed surface
height as a function of the standard deviation of the added
Gaussian noise. The different curves are for the different sur-
faces shown in Figures 1. It is clear that the mean-squared
error grows slowly with increasing noise standard deviation.
The torus and the volcano give the poorest errors, while the
ridge and the dome give the smallest errors. This is s reflec-
tion of the fact that the torus and the volcano are the more
structured surfaces.

8.2. Real World Data

We have experimented with a variety of real world images of
predominantly Lambertian objects with small local specular
highlights and albedo variations. In principle we can over-
come both of these problems. In a recent paper, we have de-
scribed a probabilistic method for specularity removal which
uses the Torrance and Sparrow model to perform Lamber-
tian reflectance correction for shiny objects '2. Local albedo
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Figure 5: Results of the algorithm on the image of the Three
Graces Relief fragment

changes can be accommodated using brightness normalisa-
tion or histogram equalisation. The objects studied are a de-
tail of Michaelangelo’s Moses, a fragment of “The Three
Graces” relief and an image of a bust of Beethoven from the

University of Central Florida shape-from-shading data-base
6

In Figure 3 we show our first sequence of results. The
panels of the figure are organised as follows. In Figure 3a
we show the original image used as input to the shape-from-
shading process. This is a side view of the head of the statue
“Moses”. Figures 3b and c show the arrangements of quadric
patches after one and four iterations of the algorithm. In
these images, the different quadric patches are coded in dif-
ferent colours. Finally, Figures 3 d to g show the recon-
structed surface after successive iterations of the algorithm.
Initially, the set of surface patches is fragmented, lack coher-
ence and do not reproduce the surface detail well. However,
after four iterations the reconstructed surface is more contin-
uous and the fine detail of the object is well reproduced.

In Figure 4 we show the reconstructed surface viewed
from two different directions. There are a number of features
that are worth noting from the panels of the figure. First, the
organisation of the surface normals and the arrangement of
patches both improve as the algorithm iterates. Second, from
the different surface views it is clear that the surface struc-
ture is well reconstructed. For instance the shape of the nose,
particularly in the proximity of the nostrils, is well repro-
duced. Moreover, the fine structure of the beard, the detail in
the eye-sockets and the shape of the cheek bones are all well
reconstructed.

(© The Eurographics Association 2003.

In Figure 5 we repeat the sequence of panels and in Fig-
ure 6 we show different views of the reconstructed surface
for a section of the relief “The Three Graces”. The same it-
erative improvement in the quality of the surface normals
and the patch arrangement is clear. In this case the algorithm
converged after 3 iterations. Morover, the different views of
the surface reveal that the detail of the relief is well repro-
duced. The legs, buttocks and indentation in the back of the
left-hand figure are all well reconstructed.

Finally, Figures 7 and 8 show analogous results for an im-
age of a bust of Beethoven. Here the path structure is particu-
larly clear and corresponds well to the topographic structure
of the surface. For instance, the eye sockets correspond to
distinct patches. Both the patch structure and the structure
of the needle maps are improved as the algorithm iterates.
Initially, little of the surface structure is evident. However,
after the algorithm has converged the structure of the hair
and the boundary of the cheeks have become well defined.
These features are all clear in the different views of the re-
constructed surface.

9. Conclusions

In this paper, we have described a graph-spectral algorithm
for shape-from-shading. We constrain the surface normals
at each image location to fall on an irradiance cone whose
axis is the light source direction and whose apex angle is
determined by the measured image brightness. The method
uses the leading eigenvector of the adjacency matrix to
identify a curvature minimising path for surface integra-
tion and perform height recovery. By fitting quadric surfaces
to the height data, we perform surface smoothing. We up-
date the surface normal directions by rotating them so that
they point in the direction of the fitted surface gradient.
The surface integration and surface normal adjustment steps
are iterated until stable height estimates are recovered. The
method proves effective for reconstructing surfaces from sin-
gle views of 3D objects, and gives subjectively better results
than a number of alternative shape-from-shading methods.

Figure 6: Views of the surface of the Three Graces Relief fragment
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Figure 7: Results of the algorithm on the image of the Beethoven
bust
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