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Figure 1: Left: a mass-spring network is partitioned into two independent sets of particles colored in red and black (top), and rendered
as a triangulated mesh (bottom). During the animation, each one of these sets is efficiently computed in a single parallel step. Middle: a
cloth-chair collision (19K springs, 2.5 ms per time step). Right: collision between four layers of clothes and a moving sphere (32K springs,
4.1 ms per time step). Timings include both numerical integration and collision handling.

Abstract

We introduce a practical iterative solver for mass-spring systems which can be trivially mapped to massively parallel architec-
tures, in particular GPUs. We employ our solver for the interactive animation of virtual cloth and show that it is computationally
fast, robust and scalable, making it suitable for real-time graphics applications. Under the assumption that the input system is
represented by a quadrangular network of masses connected by springs, we first partition the particles into two independent
sets. Then, during the animation, the dynamics of all the particles belonging to each set is computed in parallel. This enables a
full Gauss-Seidel iteration in just two parallel steps, leading to an approximated solution of large mass-spring systems in a few
milliseconds. We use our solver to accelerate the solution of the popular Projective Dynamics framework, and compare it with
other common iterative solvers in the current literature.

1. Introduction

Mass-spring systems are widely employed for real-time animation
of a broad range of soft bodies such as clothes [Pro95, BFA02],
hair [RCT91, LBOK13] and skin in virtual characters [TPBF87,
HT04, ARF15]. These systems are composed by a network of
masses, represented by particles, connected together by springs
which govern their dynamics such that they plausibly replicate
the deformations of real soft objects when subjected to external
forces (Fig. 1). A mass-spring system is usually described by a
large and sparse system of linear equations, which must be solved
in a few milliseconds to maintain real-time interactivity. Station-
ary iterative solvers have become a common choice to address

this problem in the domain of interactive physics-based anima-
tion [MHHR07,Sta09,MMCK14,FTP16,Wan15] because they are
relatively simple to implement and provide an approximate solution
of the system very rapidly. In this context, realism can be sacrificed
as long as the solution is accurate enough to be believable to the
final user.

In particular, the Jacobi and the Gauss-Seidel methods [Saa03]
are two of the most widely used solvers. The Jacobi method is
trivially parallelizable but requires a high number of iterations to
converge to an acceptable solution, hindering its efficiency. The
Gauss-Seidel method converges much faster but is inherently se-
rial and as such does not map well on parallel computational ar-
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chitectures. Recent methods based on graph coloring enable the
parallelization of the Gauss-Seidel method, removing concurrency
issues such as synchronization and intercommunication between
threads [FP15, FTP16].

In these approaches, the system is decomposed into independent
sets of equations, and all the equations in the same set are com-
puted in parallel leading to a significant performance speed-up.
Such decomposition is carried out by using a graph coloring al-
gorithm: the graph of constraints is colored with a distance-1 al-
gorithm [GR01], such that neighboring constraints have different
colors. The constraints belonging to the same color do not depend
on each other and can be solved independently in the same parallel
step. Thus, it is desirable to use as few independent sets as possible.
Finding the minimal number of sets, however, is an NP-complete
problem whose complexity may reduce the effectiveness of such
approaches.

Contribution. We propose a novel iterative scheme for quadran-
gular mass-spring systems (Fig. 1) which are employed to ani-
mate three-dimensional soft bodies such as cloths and ropes. With-
out loss of generality, we use the recently introduced Projective
Dynamics framework [LBOK13, BML∗14] to model the system.
We obtain a graph which is bipartite by definition, meaning that
only two sets are needed to cover the entire graph using Red-
Black ordering. We show that this strategy allows a full Gauss-
Seidel iteration in just two parallel steps regardless of the num-
ber of constraints in the mass-spring system. We demonstrate the
computational speed and robustness of our solver, which maps very
well with the hardware architecture of modern GPUs, similarly to
Jacobi-based methods, retaining the convergence speed of Gauss-
Seidel. This makes our solver efficient, robust and scalable, and
thus very suitable for the real-time animation of soft bodies com-
posed of a large number of masses and springs.

2. Related work

2.1. Simulation frameworks

As described in [TPBF87], the shape and motion of soft bodies can
be effectively expressed as a set of partial differential equations
based on elasticity theory. In order to solve them in the smallest
amount of time, such equations are discretized, producing a sys-
tem of inter-dependent linear equations. One way of discretizing
continuous shapes is to sample their geometry into particles with
masses, connected by constraints. Such constraints govern the dy-
namics of the particles during the animation. This model has been
used in [Pro95] to simulate convincing non-extensible cloth, and
in [Fau99] for interactive solid animation. [BW98] introduced a
simulation method to handle large time steps for cloth simulation
without sacrificing stability.

The Position Based Dynamics framework [MHHR07, MMCK14],
presents a model to animate any type of soft body by using differ-
ent types of constraints. For example, one can use bending con-
straints to simulate cloths with different folding behaviors, vol-
ume preservation constraints to keep the volume of tetrahedral
meshes constant [BMM15], and density constraints for animating
fluids [MM13]. Position Based Dynamics is fast, easy to implement

and controllable. A similar approach is used in Autodesk’s Nucleus
framework authored by [Sta09].

The Projective Dynamics framework [LBOK13, BML∗14] pro-
vides a trade-off between the simplicity and efficiency of Position
Based Dynamics, with the accuracy of physically-correct meth-
ods such as the finite element method (FEM). In Projective Dy-
namics, constraints are defined with energy potentials derived from
physical laws. In this approach, an alternating minimization tech-
nique is used to solve the constraints [BPC∗11]. Recently, Projec-
tive Dynamics has been reformulated as a quasi-Newton method,
which enables simulation of a large group of hyperelastic materi-
als [LBK17].

2.2. Parallel solving

In the original formulation of Position Based Dynamics
[MHHR07], the constraints are solved in an iterative, sequential
Gauss-Seidel fashion and thus does not exploit the parallel ca-
pabilities of modern multi-core processors. To address this prob-
lem, Macklin and Müller used a parallel Jacobi solver to ani-
mate rigid bodies, soft bodies and fluids including collision han-
dling [MM13,MMCK14]. In general, however, Jacobi solvers have
a slow rate of convergence, and thus require a high number of
iterations to provide an acceptable solution, in particular when
the soft objects are composed by many constraints. Under cer-
tain circumstances, the convergence rate of Jacobi-based solvers
can be significantly increased by using the Chebyshev polynomi-
als [Wan15, WY16].

Recent works have parallelized Gauss-Seidel without having to use
concurrency control techniques which slow down the execution.
The concurrency problem occurs when the Gauss-Seidel solver ac-
cesses the same particle position from multiple threads. This prob-
lem can be avoided by using atomic operations, but this impacts
the overall performance [BMM15]. A more efficient approach em-
ploys graph coloring as proposed by [FP15, FTP16]: the Gauss-
Seidel solver is parallelized by using an approximated graph col-
oring technique. A graph is built, where each node represents a
constraint, and two nodes are connected if they share at least one
particle. The whole graph is colored in parallel using a random-
ized technique; each color in the graph corresponds to an indepen-
dent set of constraints whose dynamics is solved in a single parallel
step. The rate of convergence of Gauss-Seidel is preserved, and the
computation time spent for each iteration depends on the number
of colors. Therefore it is desirable to have as few colors as possible.
A similar approach was used for collision handling by [TBV12] to
mitigate jittering between animated rigid bodies.

Our approach always uses just two colors, generating large sets of
independent equations which are solved in parallel increasing the
efficiency of the whole computation.

3. Background

In this section, we describe the theoretical basis of our approach.
First, we provide a brief introduction to stationary iterative solvers,
namely Jacobi and Gauss-Seidel, that are used to solve large and
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sparse systems of linear equations [Saa03] (Sec. 3.1). Then, we de-
scribe how the proposed schema can be applied to solve Projective
Dynamics in real-time (Sec. 3.2).

3.1. Linear iterative solvers

A set of n linear equations is expressed in matrix form as:

Ax = b (1)

where A is a m× n matrix of scalar coefficients, x is a vector of n
unknowns, and b is a vector of m entries.

The Jacobi and Gauss-Seidel methods are linear solvers employed
to find x [BBC∗94]. Starting from an initial guess of the solution
x0, these solvers calculate an increasingly accurate approximation
xk+1 = f (xk) of the correct solution by iterating over it. These it-
erative solvers produce a sufficiently accurate approximation very
rapidly, and are therefore commonly used in real-time physics sim-
ulation.

Jacobi method. By assuming that A is non-singular and that all
diagonal values aii are non-zero scalar coefficients, the Jacobi iter-
ative method can be written as:

xk+1
i = (bi−∑

j 6=i
ai jxk

j)/aii (2)

All the unknowns xk+1
i depend on the known terms xk

i , thus all the
equations can be computed in parallel. This approach, however, ex-
hibits a low rate of convergence per iteration, potentially hindering
interactivity if the system is composed of many equations.

Gauss-Seidel method. The Gauss-Seidel method solves each
equation sequentially based on the current state, and directly up-
dates the result. The method is defined as follows:

xk+1
i = (bi−∑

j<i
ai jxk+1

j −∑
j>i

ai jxk
j)/aii (3)

In Eq. 3, the leftmost sum in the numerator considers the currently
updated values xk+1, while the rightmost sum considers the values
obtained at the previous iteration xk. This is in contrast to the Jacobi
method which only computes one sum using the already known
values at iteration k. While the Gauss-Seidel method has a faster
rate of convergence, xk+1

i must be computed in a sequential manner
and, as such, it is not trivial to implement in a parallel fashion.

3.2. Projective Dynamics

The Projective Dynamics framework bridges the gap between Posi-
tion Based Dynamics and finite element methods, providing a more
accurate model for simulating soft bodies. In Projective Dynamics,
a constraint is described with a potential energy. In the case of the
spring constraint, Hooke’s law is used. For each spring with stiff-
ness s, connecting two particles pi and p j as endpoints, and rest
length Li j , the potential energy is expressed as:

E(pi, p j) =
1
2

s(||pi−p j||−Li j)
2 (4)

The constraints (that is, the springs) are considered satisfied when

Algorithm 1: Projective Dynamics - parallel Red-Black Gauss-
Seidel solver

1 Numerical integration (Verlet)
2 loop numNonLinearIterations times
3 Local step
4 loop numLinearIterations times
5 for each P ∈ (PR,PB) do
6 for each pi ∈ P do in parallel
7 Global step
8 end
9 end

10 end
11 end

the energy is minimal, i.e. zero. By considering the set U of all
the springs in the system, which may be identified by the pair of
indices of their connecting particles i and j, Eq. 4 can be written as
a minimization problem [LBOK13]:

E(p) = min
d∈U
||(pi−p j)−Li j||2 (5)

This is an unconstrained non-linear least squares problem, which
is solved by using a variant of the Alternating Direction Method
of Multipliers (ADMM), an iterative local/global alternation ap-
proach [BPC∗11, NOB16]. For each iteration, first each spring is
solved individually, regardless the state of the connecting springs
(local step). Then, these local configurations are used to build a
linear system of equations to project the position of the particles as
near as possible to the just found local solution (global step). By
alternating between the local and the global step, the minimization
problem is solved in a few iterations. In the case of mass-spring sys-
tems, the global linear system is usually rather big (the number of
equations is equal to the number of springs), sparse and symmetric
positive definite. While the local step can be efficiently computed
in parallel, the major computational cost is finding the solution of
the global linear system. In Sec. 4, we provide our method to solve
such system efficiently, without requiring to explicitly store the ma-
trix (a so-called matrix free solver), reducing the cost both in terms
of time and memory.

4. Our Red-Black Method

4.1. Overview

The overall process to solve the minimization problem in Eq. 5 ac-
cording to the Projective Dynamics method can be summarized as
follows. First, two independent set of particles PR and PB are built
as explained in Sec. 4.2. Then, the Projective Dynamics method is
solved for each frame according to Alg. 1.

In step 1, the dynamics are advanced using Verlet integration
(Sec. 4.3). Then, the ADMM method is applied in steps 2-7: the
local steps are performed (Sec. 4.4), and the results are used to
solve the linear system in the global step, where all the equations
are solved in two parallel steps (Sec. 4.5). The outer loop is iterated
until a feasible solution is found.
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Figure 2: The mass-spring system (top) with the corresponding
coefficient matrices (bottom). Left: The input mass-spring-system.
Right: the particles are re-ordered in independent sets which are
solved in parallel.

4.2. Graph coloring

The main idea of the Red-Black Gauss-Seidel solver is to partition
the system of equations in two independent sets. Each set can then
be solved independently of the other, which allows us to parallelize
computation [Saa03].

The mass-spring system can be seen as a graph, where the nodes
represent particles and the edges correspond to springs. By color-
ing this graph such that connected particles do not have the same
color, the particles are partitioned into independent sets. Then, the
dynamics of all the particles belonging to the same set is solved in
parallel. Ideally, it is desirable to have a small number of similarly
sized partitions to maximize parallelization and workload balance.

We use a specialized case of this technique, namely Red-Black or-
dering, where only two colors are needed. The equations in the
linear system produced by the global step in Projective Dynamics
are reordered to produce a result similar to the example depicted
in Fig. 2. In the top row, the input mass-spring system (left) and
the remapped one (right) are visible. In the bottom row the corre-
sponding coefficient matrices are shown. Each row in the matrix
corresponds to a linear equation as in Eq. 6. Starting from the input
configuration of the mass-spring system, we remap the indices of
the particles in the network, so that all the unknowns on the diago-
nal are solved in one parallel step.

4.3. Numerical integration

We use the Verlet scheme for time integration [AE15], described in
Alg. 2. This method directly manipulates the particle positions, and
is reasonably accurate, stable and easy to implement.

Algorithm 2: Verlet integration

1 for each particle pi do in parallel
2 fext ⇐ fg−vifdamping

3 pi(t)⇐ 2pi(t)−pi(t−h)+h2fext

4 end

For each particle pi, we compute the position at the next time step h.
This is done in parallel. In step 2, the external forces are calculated,
considering gravity fg, damping fdamping and the velocity vi. In step
3, the position is advanced by one time step.

4.4. Local step

For each spring si j, with rest length Li j and connecting particles pi
and p j, we compute di j, which represents the local solution for si j
minimizing Eq. 4.

Algorithm 3: Projective Dynamics, local step

1 for each spring si j ∈U do in parallel
2 di j = Li j(pi−p j)/‖pi−p j‖
3 end

4.5. Global Step

The set {di j} is used to project the position of the particles to-
wards the local solution of the springs. This is done by linearizing
Eq. 5 and assembling a linear system of equations as explained
in [LBOK13, BML∗14]. Since the resulting matrix A is big and
sparse, we solve the system using a matrix-free approach to reach
a solution faster and saving memory, similarly to [Wan15, FTP16].
Each equation in the linear system is assembled on the fly accord-
ing to the following formula:

pk+1
i =

mi
h2 yi + ∑

j<i
si j

(
pk+1

j +di j

)
+ ∑

j>i
si j

(
pk

j +di j

)
mi
h2 + ∑

j 6=i
si j

(6)

where yi is the position of the particle i at the end of the Verlet
integration, pk

i is the position of the particle at the current linear
iteration k, mi is the mass of the particle, pk

j are all the neighboring
particles, si j is the stiffness of the spring, and h is the time step.

The Red-Black ordering ensures that particles belonging to the
same color do not share any constraint, thereby allowing the system
to be solved in only two parallel steps. Inside each parallel step, the
solving is equivalent to the lexicographic Gauss-Seidel method.

5. Experimental Results

For the sake of comparison, we implemented the Red-Black Gauss-
Seidel (RBGS) and Jacobi solvers on the GPU using C++/CUDA,
while the sequential Gauss-Seidel solver was implemented on the
CPU using C++. All the tests were run on an NVIDIA GeForce
GTX970 GPU and an Intel Xeon E5-1620 CPU.
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Figure 3: Performance using a stretched network of springs shrink-
ing to its original size. The particle system consists of 10 000 par-
ticles and 19 800 constraints. Top: Error over iterations, using 11
iterations per frame. Bottom: Error over time, using a time budget
of 2 ms. The number of iterations used for each solver is reported
next to the curves.

5.1. Performance

We compare the RBGS solver with both parallel Jacobi and sequen-
tial Gauss-Seidel solvers using two different scenarios. In the first
scenario, a network of 10 000 particles is stretched uniformly along
all its dimensions, with the numerical integration disabled. During
the animation, we measure how fast the particle system converges
to the original size. In the second scenario, a piece of cloth is fixed
by two of its corners and left free to oscillate under the gravity
force. We compared the numerical results both with respect to the
number of iterations per frame, and by fixing the time budget to
2 ms. Results for both scenarios are shown in Fig. 3 and Fig. 4,
where the absolute error is measured as follows:

∑
N
(|pi−p j|−Li j)

2 (7)

where pi and p j are particle positions and Li j is the rest length of
the connecting spring.
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Figure 4: Performance using a hanging cloth consisting of 10 000
particles and 19 800 constraints (Fig. 5). Top: Error over itera-
tions, using 11 iterations per frame. Bottom: Error over time, using
a time budget of 2 ms. The number of iterations used for each solver
is reported next to the curves.

RBGS uses two parallel steps per iteration. Thus, it performs ap-
proximately half the number of iterations compared to the Jacobi
solver in the same time budget. Nevertheless, it finds a more accu-
rate solution faster, due to its higher rate of convergence per iter-
ation. This results in a less elastic behavior as depicted in Fig. 5.
The serial Gauss-Seidel solver can only achieve 2 iterations using
a time budget of 2 ms leading to an unstable behavior, as shown in
the accompanying video.

5.2. Test cases

In this section, we present a few challenging test cases demonstrat-
ing the flexibility of our approach. All of these test cases are pre-
sented in the accompanying video. The sequence in Fig. 6 demon-
strates that collisions between multiple cloths are handled without
any interpenetration. In this example, a time step of 2 ms and 8
physics updates per frame is used. The cloths consists of 16 000
particles and 32 000 constraints in total. The example runs in 35
fps. The funnel sequence in Fig. 7 shows collisions between sev-
eral cloths and a funnel. The cloths consist of 30 000 particles and
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Figure 5: Still frames from the animation corresponding to the
plots in Fig. 4. Top: our solver, middle: serial Gauss-Seidel, bot-
tom: parallel Jacobi.

59 000 constraints in total. A time step of 2 ms is used, with 8
physics updates per frame. The frame rate for this example was 35
fps. In Fig. 8 we show how RBGS can handle efficiently changes of
topology in the mass-spring system. The user first shoots a number
of cannonballs at the cloth (4K particles, 8K springs), then tears it
by picking the cloth and dragging with the mouse. Changes of the
topology do not require that the coloring has to be recomputed. The
frame rate never drops below 60 fps.

6. Limitations and future research

We presented a novel Red-Black Gauss-Seidel solver for soft body
dynamics. Using a quadrangular structure of particles and con-
straints, our solver outperformed both standard Jacobi and Gauss-
Seidel in terms of computational speed and rate of convergence.
It supports topology changes such as tearing and utilizes a matrix-
free approach reducing the amount of required memory. By using
the approach by [JTPSH15], any triangulated mesh can be trans-
formed into a quadrangular mesh, allowing it to be simulated using
our solver.

However, the quadrangular structure is also the main limitation of
our approach, since it influences the dynamics of the particle sys-
tem. In fact, many constraints (such as bending), are difficult to im-
plement. Furthermore, it is not possible to insert structural springs
along the diagonals of the quadrangles, without adding more col-
ors.

In fact, we consider this work as a first step towards a more gener-
alized solver which expects a connectivity known a priori. Under
this assumption, it is possible to develop a number of interesting
optimizations. For example, it becomes easy to partition the input

particles and constraints into independent sets without using poten-
tially complex coloring strategies, as done in [FTP16, FP15]. Also,
knowing the input connectivity, a geometric multigrid approach can
be developed in a straightforward way, potentially increasing the
overall efficiency of the solver. Extending the solver to support vol-
umetric structures is also possible, and we plan to explore this re-
search direction in the future.
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Figure 7: Three cloths colliding with a funnel. After exiting the end of the funnel, they collide with a box.

Figure 8: Interactive change of topology. Cannonballs shot at the cloth by the user, which results in tearing holes. Then, the user picks a
point on the cloth and drags it until the cloth breaks.
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