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Abstract

This paper presents a novel software framework for quantitative validation of physically-based deformable models in computer
graphics. In the majority of previous studies, validation is qualitative (through visual plausibility), which is necessarily user
subjective. The proposed framework facilitates construction of a single scalar output that quantifies the agreement between
the complete time histories of test and reference models. Different models and comparison metrics can be easily included
within the general framework. The framework is shown to yield a high accuracy score for a simplified model that can be
analytically derived from the reference model, indicating that the framework is reliable. A lower score results when evaluating
a more approximate, yet still visually plausible, model, demonstrating the objective sensitivity of the framework. The software
[framework can thus provide an objective measure of accuracy and a standardised way to quantitatively compare the accuracy
of one method against another, whilst also supplying a quantitative rationale for trading accuracy and performance.

CCS Concepts

eComputing methodologies — Model verification and validation; Physical simulation; Simulation evaluation;

1 Introduction

The increase in power of modern day processors means that it is
now possible to simulate physically based deformable models (PB-
DMs) within computer graphics (CG) that perform well (often in
real-time) and are accurate enough so as to be realistic, all whilst
maintaining their stability. A high level of accuracy is important as
it helps with the immersion and interactions of the user into the vir-
tual environment. Accuracy, performance and stability have con-
trasting computational requirements. A more accurate model re-
quires greater computational resources, whereas if performance is
important then some degree of accuracy will typically have to be
sacrificed to accommodate the performance improvements.

Our contribution in this work is a software framework that can
be used to objectively quantify the accuracy of competing PBDMs
used in CG. It quantifies the agreement of the time-evolving defor-
mations of a test PBDM against a reference PBDM’s deformation
in a selected scenario through a single scalar output quantity. Whilst
this quantity is not a diagnostic tool to identify sources of errors, to
the best of our current knowledge obtaining a single quantity for
accuracy over a prescribed simulation time is not something that
has previously been studied. The framework is a component-based
software architecture whose necessary components are replaceable
and connected to produce the output quantity in the range [0, 1],
with a score of 1 being a maximal score of agreement between
series. An application of this framework is the ability to directly
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compare the outputs produced by different test PBDMs to establish
a ranking of accuracy.

In virtual reality applications, a user’s interaction with entities
in the virtual environment improves immersion [NLB*07]. In this
interaction, stability and performance of a PBDM’s simulation
hold more importance than its accuracy [NMK*06]. Some non-
physically based models have been developed that knowingly sac-
rifice accuracy for the sake of performance gains [MHTGOS]. On
the other hand, in surgical simulation, accuracy is understandably
of the utmost importance [ZZGC17]. Indeed, the order of priority
of performance, accuracy and stability is very much dependent on
the specific field within CG being targeted. Each PBDM proposed
in the literature balances the three factors differently and so is more
suited to some fields than others.

The quantification of accuracy is explored through the procedure
of verification and validation (V&V). Whilst ultimately dependent
on the intended use of the application, a definition of V&V is given
in [OT02] as:

1. “Verification: the process of determining that a model imple-
mentation accurately represents the developer’s conceptual de-
scription of the model and the solution to the model.”

2. “Validation: the process of determining the degree to which a
model is an accurate representation of the real world from the
perspective of the intended uses of the model.”
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Verification might be viewed as the successful implementation of
the model on a computer, whilst validation is whether or not that
computational model’s solutions hold true to its real-life or analyti-
cal counterparts. Indeed, “the ultimate test of accuracy is how well
the numerical method reproduces known results" [Mon92].

The structure of the paper is as follows. Section 2 looks at related
work in the literature. The design and a description of the frame-
work is given in Section 3. As example applications of the frame-
work, two popular PBDMs from the literature are evaluated in a
familiar cantilevered beam scenario in Section 4. Both PBDMs are
mass-spring systems (MSS): a collection of discrete point masses
connected by Hookean springs. The two PBDMs differ in their ap-
proach to solving the equations of motion, with the latter being a
more approximate solution than the former that provides greater
performance. The results, also presented in Section 4, are analysed
and their objective scores of accuracy directly compared. Conclu-
sions and a discussion of the limitations and future work complete
the paper in Section 5.

2 Related Work

It is common for validation of PBDMs in CG to be only qualita-
tive, as has been expressed in surveys [NMK*06] [MBP14]. Often
the acceptance criteria for accuracy is through visual plausibil-
ity [BMO* 14] [NMK*06]. A disadvantage of qualitative validation
is that it is subjective; the validity of a PBDM is dependent on the
user’s senses, which are not always reliable. It is difficult to detect
subtle abnormalities in a simulation [BET14] and reliable sensory
validation requires full concentration throughout [NLB*07].
However, the qualitative validation of a subject matter expert
(SME) [BFZ*13] in the field must also retain its significance and
cannot be disregarded because it is qualitative. Thus, any quantita-
tive validation ought to be consistent with the qualitative validation
of any such SME [SKH*10]. Nevertheless, there is a recognition of
room for more concrete assessment [GM97] [MBP14] and the need
to validate results with the real world via a standard set of scenarios
is acknowledged [MBP14] [SSPO7]. The finite element method
(FEM) at a suitably high resolution is regarded as being the most
accurate PBDM when used to provide a solution to nonlinear solid
mechanics problems (NLFEM) [MMO07] [FWY] [Glo12]. The
determination of a sufficiently high resolution can be automated by
using a posteriori error estimates [HHO6] [ZZ92]. If the estimated
error is deemed too large in a particular region then the mesh can
be refined more finely in this area.

In interactive CG, quantitative validation techniques have sel-
dom been used. In evaluating the material properties in a PBDM,
both the Hausdorff distance [HKR93] and mean absolute error
(MAE) of displacements of points on the body are used to vali-
date the results of stretching a cloth. Real-life test data has been
compared with a NLFEM model [BKCW14]. These measures are
taken at the end of the stretching (only) and so, being a snapshot,
serve as a static evaluation of accuracy. The history of the deforma-
tion is not measured. To compare the time-evolution of such mea-
surements would evaluate the dynamic, temporal agreement; one
can imagine a scenario whereby the end deformations are in good
agreement even though the deformation histories are not. A field in

engineering that assesses the temporal agreement of reference and
test data is vehicle safety, which is discussed in section 2.3.

2.1 Quantitative Validation

The establishment of quantitative validation requires the evalua-
tion of some quantities to show agreement. Sarin et al. define an er-
ror measure as a quantity associated with differences of a particular
feature of a time series, whereas an error metric is an overall value
of discrepancy between time series [SKH*10]. An error measure
will refer to an isolated quantification of agreement that alone is
not suitable for quantitative validation. This includes a quantifica-
tion of agreement at a single time instance i.e. the static evaluation
mentioned previously. An error metric will reflect the agreement of
the entire (deformation) histories. If uncertainties in data acquisi-
tion are considered, a stochastic validation metric is obtained, oth-
erwise it is deterministic [SKH*10] [LCAH]11]. Only deterministic
validation metrics are considered in this work.

Measured errors in numerical computation can arise due to both
model and discretisation error [BTC*17]. Model error is the error
induced by the mathematical formulation of a physical problem and
is quantified in the framework presented here. Discretisation error
is the error arising due to the discretisation (approximation) of a
mesh that is modelling a continuous volume. An increase in reso-
Iution might lead to the convergence of a numerical solution; this is
the minimisation of discretisation error [BTC*17]. Error estimates
work to minimise the discretisation error in finite element solutions
[HHO6]. Once minimised, any other error against some ground
truth is primarily due to modelling error. Validation metrics that
quantify discretisation error are deterministic because the experi-
mental data sets are being compared with certainty (even though
the data sets may have been obtained stochastically) [SM15], so
the discretisation error is minimised deterministically.

2.2 Validation in Surgical Simulations

Validation in surgical simulation comprises deterministic valida-
tion measures and the evaluation of data at a single point in time
[PIS*13] [LYD*12] [YYT*15] [CAK*14] [YYT*15] [CAK*14]
[HDBCI14] [DHC*13] [DHC*16] [MADCO08] [W*12]. Compu-
tational simulation data is compared against real-life test data
and then verified based on a chosen end state. The error mea-
sure operates on displacements of points between data sets and
is typically a central tendancy (e.g. the mean value) and vari-
ation [PIS*13] [LYD*12] [YYT*15] [CAK*14], maximum error
[YYT*15] [CAK*14] or some variation of the Hausdorff distance
[HDBC14] [DHC*13] [DHC*16]. This overwhelming focus on
end-state validation ignores the histories of deformations. Never-
theless, test data exists in the form of the so-called Truth Cube for
real-time soft tissue deformation [KCO*03] [ZZGC17]. The test
data is readily available as nodal positions for a series of quasi-
static loads.

In evaluating the trade-off between accuracy and performance
of a PBDM, the plotting of root-mean-square error (RMSE) (of
nodal displacements of the test model against a reference model)
against time displays a trade-off between accuracy and perfor-
mance [CAK*14]. Whilst this allows for visual, qualitative con-
firmation, there is no translation of this error measure history into a
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quantity that might be used to compare two time series objectively,
as we do here.

A step needs to be made to transform a collection of error mea-
sures over time into an error metric. As mentioned at the start of
section 2, any sort of discrepancy between an entire pair of time
series that gives rise to some kind of quantification metric should
also reflect the views of a SME. As an example use of SMEs’
validation, a survey is conducted by Sui ef al.. A deformation -
modelled using a popular PBDM called position-based dynamics
(PBD) [BMO*14] - is evaluated by surgeons and produces results
of around 90% mean satisfaction with a 5 — 10% standard devi-
ation [SPQ*17]. A high mean score with a comparatively small
spread, sourced from SMEs, provides very good validation that
lies somewhere between qualitative and quantitative. The ratings
from SMEs are the most informed and reliable, and should be the
most objective. As such, error metrics that are developed to reflect
SMEs’ opinions should be used. This is precisely what is done in
the engineering field of vehicle safety.

2.3 Validation in Vehicle Safety

Qualitative validation should be based on the knowledge of sub-
ject matter experts (SMEs) [BFZ*13]. A problem with this is that
each design iteration - be it large or small - requires the constant
cooperation of developers and SMEs. This can be a slow back and
forth conversation that can hinder productivity should the SME not
be readily available.

In vehicle safety, some signals, plotted as curves on a graph, are
quantitatively compared and scored to show the level of agreement
between them. The purpose is to compare two unambiguous sig-
nals; some measure is plotted against time, once for (real-life) test
data serving as the reference and once for computational data serv-
ing as the comparison [SKH*10] [Weil7], with the evaluation re-
flecting that of SMEs. Since the field is vehicle safety, the tuning
of parameters is strict so as to comply with the obvious safety con-
straints that such a field demands.

Two metrics that quantify the agreement between pairs of sig-
nals are the CORrelation and Analysis (CORA) metric [GGW09]
and the Enhanced Error Assessment of Response Time Histories
(EEARTH) metric [BFZ*13]. CORA uses two independent sub-
ratings. The first is a corridor rating that assesses, at each sample
point of the signal, how close the corresponding point on the com-
parison curve is through the use of “corridors" around the refer-
ence curve. The second is a cross correlation rating that directly
assess the curves’ characteristics such as magnitudes, shapes and
phase shifts. The idea is that each sub-rating makes up for the dis-
advantages of the other. EEARTH, as the name suggest, enhances
EARTH that uses three sub-ratings relating to phase, magnitude
and curve topology [SKH*10]. Parameters for both CORA and
EARTH are tuned by the user for the application. EEARTH has
its parameters either fixed by SMEs or automatically calculated de-
pending on the reference curve and produces a score in the range
[0, 1], with 1 being the best score for matching signals.

The ISO18571 standard seeks to develop an error metric that
utilises the best features from CORA and EEARTH, the leading
metrics in the field [BFZ*13]. EEARTH’s magnitude (eps), phase
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(ep) and topological (er) error ratings and CORA’s corridor rating
(ec) form a weighted linear combination to give

€1S018571 = 0.4€C +0.2eps +0.2ep +0.2er € [0, 1]. (@))]

The following thresholds are given by SMEs and remain valid
only when the parameters of the individual error measures are un-
changed from the ISO standard [BFZ*13] [VDSG15] [SWU*15]:

Rating, R | Grade
0.94 < R<1.00 | Excellent
0.80<R<0.94 | Good
0.58 < R<0.80 | Fair
0.00 < R<0.58 | Poor

The ISO18571 standard is used in the framework in Section 3.2 and
the above error metric grades will be used in the results of Section
4 to describe the accuracy of the tested PBDMs.

3 Framework

The strategy for quantitative validation requires selection of er-
ror measures and error metrics, as defined in section 2.1. It also
requires the selection of scenarios to simulate in which the errors
can be evaluated. The design of the framework is presented in this
Section together with a description of its parts.

The selection and specification of error measures, error metrics,
scenarios and PBDMs is made using components. These compo-
nents are modular, architectural units; they are primary computa-
tional elements and data stores of the system with well-defined
interfaces that expose their functionalities [LW07]. The software
architecture for the framework’s components is presented in Fig-
ure 1 as a component diagram, modelled in UML 2.0 [PPO5]. The
ports, representing the interfaces, serve as either sinks or sources
for receiving or sending data, respectively (these are “sockets” and
“lollipops” in UML 2.0), and are connected via assembly or dele-
gation [LWO07]. The components are composed in the design phase
of the component life cycle; all component compositions are made
in the design stage and persist until the runtime with no further
amendments [LWO07]. The user can substitute appropriate compo-
nents without changing the framework’s functionality.

An Entity component is composed of a Body component com-
prising a set of nodes (or “physics state”, for simulation) and a
Mesh component for regular rendering of those nodes as vertices
(or “render state”). Thus the mesh component depends on the Body
component’s physics state. The deformation of the body’s nodes
is governed by a Deformation Model component (Section 3.4)
through an assembly connection on the deform interface. The body
requires initialisation, which is provided through delegation con-
nections to the Scenario component (Section 3.3) by the Entity
component and then the Supervisee component. The Supervisee
component contains two Entity components; one serves as the ref-
erence entity, whose state is queried against by the second, test en-
tity. As the name suggests, the Supervisee component is supervised
in the framework by the encompassing subsystem (not shown),
driving the simulation and rendering the states. It also contains two
DTS (discrete time series) components that each require data and
provide a series. The required data is provided, through delega-
tion by the Supervisee component, by an Error Measure compo-
nent (Section 3.1). This Error Measure component itself requires
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Figure 1: A UML 2.0 component diagram of the software framework.

a physics state, realised on the Body component (through delega-
tion connectors on the Supervisee and Entity components). Finally,
the provided time series from the DTS components are passed to
an Error Metric component which produces an output rating (Sec-
tion 3.2). Components may be substituted provided, of course, that
the contracts set forth by the interfaces are abided by. Each com-
ponent in the current framework is explained further below. The
PBDM that is being evaluated is inserted in as the Deformation
Model component on the test Entity component.

3.1 Error Measure Component

The error measure measures some quantity of the state of a
PBDM at a single instance in time, relative to some reference state.
The reference state will be the initial positions of the bodies in that
particular scenario. As discussed in section 2.2, variations of the
Hausdorff distance are popular choices for error measures in the lit-
erature when some shape matching algorithm is used. The directed
Hausdorff distance is defined as [HKR93]:

d =max min ||a— b||, 2
DH aeAbEgll Il @

where A and B are sets of positions in Euclidean space and so || - ||
is the Euclidean norm between points a € A and b € B. This mea-
sure is the greatest of all distances from each point a € A to the
closest point b € B and can be thought of here as how much the test
and reference bodies overlap (a measure of 0 is a perfect overlap).
Due to its popularity in shape matching, the bidirectional Hausdorff
distance [HKR93] is used in the framework:

dppH =max(dpH (A, B),dpH(B, A)). 3
Alternative choices are possible and require a simple substitution
of the Error Measure component. For example the modified Haus-

dorft distance [DJ94] in place of (2) in (3), which can overcome the
influence of outliers by taking an average:

1 .
dupr = 5~ ) a € Aminla=b. )
a

1.8

=
o

=06

Error measure

0.03 0.87 1.70 2.53 3.37 4.20
time (s)

Figure 2: An example test and reference signal pair over five sec-
onds.

3.2 Error Metric Component

The error measures outlined in Section 3.1 are plotted as discrete
time series serving as signals to be used in ejgg18571 (as described
in Section 2.3). A score for the test scenario is produced and serves
as the measure of accuracy. The error metric e;51857] measures
how close the test curve is to the reference curve, whilst also taking
into account the magnitude, phase and slope similarities. A set of
signals might look like Figure 2. The test signal is delayed to start
0.5s later but is otherwise the same as the reference signal. The
metric score of e;s018571 = 0.711 reflects the signals’ similarities
and accounts for the phase discrepancy independently of the other
signal properties under evaluation by the error metric.

3.3 Scenario Component
The selection of scenarios has to address the following factors:
1. Test data: does either an (exact) analytical solution or experi-
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mental data exist against which we can compare our simulated
results?

2. Complexity: are typical deformations covered? Are the scenar-
ios sufficiently complex enough (i.e. nonlinear deformations) to
reflect real-life deformations?

3. Geometric simplicity: are the continua easy to model in a
PBDM? Can a mesh be easily constructed?

4. Duration: over what timescale should the simulation remain ac-
curate?

3.4 Deformable Model Components

There are two PBDMs that must be provided. The first is a test
PBDM that is under evaluation within the framework. As stated,
this test Deformation Component can govern the deformation of
the test Body Component’s nodes (otherwise the Body does not de-
form). The user provides an implemented test Deformation Com-
ponent in the framework that is to be evaluated. The second PBDM
serves as the reference and can be an analytic solution, should one
exist in the particular scenario. In scenarios for which no analytic or
test data exists, a suitably accurate PBDM can be used as reference
instead. This suitability can be determined by an ISO18571 error
metric result that grades as “excellent” (see Section 2.3) in scenar-
ios for which there is test data available. The NLFEM provides an
approximate solution to the equations of motion from continuum
mechanics (the principle of virtual displacements [HHO06]), with a
St. Venant-Kirchhoff strain energy function. It is used in the liter-
ature as a reference model for validation and is used in the frame-
work here. Its suitability as a reference PBDM is demonstrated in
Section 4.1.

4 Results

The framework is used to undertake quantitative evaluation of
two popular example PBDMs from the literature (Section 4.2).
In Section 4.1.1, the NLFEM is shown to be a suitable reference
PBDM, whilst a particular test scenario is outlined in Section 4.1.2
that will be used in the evaluations of Section 4.2. Analysis of the
results of the evaluations is given in Section 4.3.

4.1 Test Scenarios

As mentioned in Section 3.4, if neither an analytic solution nor a
set of test data exist for a test scenario, a suitably accurate PBDM
should be used as the reference PBDM. Thus, the NLFEM is eval-
vated in the framework in a steady state 2D cantilever beam sce-
nario - for which an approximate analytic solution can be derived
- for different levels of discretisation, in order to demonstrate the
high accuracy of the NLFEM and to justify its use as a suitable
reference model. Following this, an unsteady 3D cantilever beam
scenario is presented that adheres to the scenario requirements of
Section 3.3, together with the NLFEM configuration that will serve
as the reference PBDM. This scenario and reference PBDM com-
bination will be used in evaluating test PBDMs in Section 4.2.

4.1.1 Establishing a gold standard: Steady 2D Cantilever
Beam

The classical solid mechanics problem of the bending of a can-
tilever beam subject to a constant pressure loading, P, on its upper
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Figure 3: The setup of the cantilever scenario.

face is as in Figure 3. The balance of linear momentum is given by
0%u; 0Ty

P o2 % + I,

where p is the continuum’s density, F is the body force, u is the

displacement, x is a coordinate direction and 7 is the second Piola-

Kirchhoff stress tensor. An approximate (steady state) solution for
the stress field can be constructed from the following Airy stress

&)

function, valid in the absence of body forces (@ = F; =0) and

oz
for small pressures [HHO6]:
1
D(x,y) = ax* + bxzy + c(xzy3 - gys) + dy3, (6)
where
IP b 3P 1 P 1 P
a=——Pb=——,c=-—,d = — —.
4 8 H 8 H3 20H

The displacement field can be recovered as (u is a Lamé constant,
derivable from E and v):
1
u(x,y) = 2—((1 -v)(2ax+2by(x-L) @)
v
+ 2cy()c3 - xy2 - L3) +6dy(x—L))

+2a(vL—x)—2by(x+L)—2cxy3);
1
v(x,y) = Z((l -v)(2ay + b(y2 —x>+2Lx —Lz)

+c(3x%y? - %(y4 +xt 4304203y
+3d(y* - x* +2Lx - L?))

+ b(3L2 -x2- 2Lx)+ c(y4 - 3x2y2)
+3d(2Lx — - y2 - LZ)).

The pressure is incremented at each timestep to give a series of
quasi-static loads. The length is set to L =5 and the height to 2H =1
so as to non-dimensionalise all lengths. A NLFEM solution is com-
puted using oomph-lib [HH06], with E = 250Nm~2,v = % This is
compared against the analytic solution, serving as the reference. To
eliminate discretisation errors in the NLFEM model, the error met-
ric rating of Section 3.2 is calculated for different discretisations in
the beam’s body. Figure 4 shows this. The error metric achieves a
score of at least 0.97 - excellent by ISO18571 - for discretisations
of x > 15,y > 3 nodes and finer. Whilst mesh refinement proce-
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Figure 4: A graph showing the ISO18571 error score, e, for differ-
ent discretisations of the 2D cantilever in x and y. The point circled
in red is the minimum discretisation for a score of at least 0.97.

dures using a posteriori error estimates can (and will) be used in
scenarios for reference model calculations, here the sensitivity of
the framework to a purposeful increase in mesh resolution can be
observed through the corresponding error metric scores in Figure
4. The high scoring error metric scores validate NLFEM to be used
as a reference in future evaluations in the framework.

4.1.2 Unsteady 3D Cantilever Beam

The geometry is the same as 4.1.1 except it is extended to three
dimensions. The inertia term is included in (5), whilst the pressure
loading is removed. Instead, a body force of (0,—1,0)7 is applied.
This has the effect of the beam being previously steady in its initial
position and instantaneously being subjected to the body force at
the start of the simulation. The body is perfectly elastic; no damp-
ing occurs and the body oscillates indefinitely. The approximate an-
alytic solution, (7), is for steady state only and is therefore no longer
valid. The undeformed body is a parallelepiped shape and simple
to recreate. The simulation is run for 5 seconds to allow for a sig-
nificant deformation that generates an oscillation. The cantilever is
4x1x1m? and is both homogeneous and isotropic, with the elastic
modulus, E = 400Nm~2 and Poisson’s ratio, v = % At fixed time
steps, dt, the simulation is advanced by dt. The Hausdorff distance
of the beam to its initial position is calculated at each time step.
The reference NLFEM, serving as the gold standard, is discretised
with the use of the Z2 error estimator [HHO06] [ZZ92] with strict
error thresholds (minimum and maximum permitted errors of or-
der 10™* and 1073, respectively [HHO6]) to give a non-uniformly
discretised mesh of greater than 4000 vertices. Different, unrefined
and uniform resolutions provide solutions that are compared with
this gold standard in Figure 5. A particularly noteworthy observa-
tion is the error metric’s sensitivity to the convergence towards the
gold standard. It remains to show what the minimum simulation
updates per second can be without sacrificing accuracy. Whilst this
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Figure 5: Above: A graph showing the convergence of the NLFEM
model when simulating the 3D cantilever beam scenario. The ar-
row represents an increase in mesh resolution, whilst the solid
line represents the resolution with discretisation error minimised
through the use of Z2 error estimation. Below: The ISO18571 er-
ror metric scores of the signals in the above graph against the refer-
ence signal. Additional intermediate resolutions are included. The
colours are for consistent mesh resolutions in each graph.

does not have an effect on the accuracy, performing fewer updates
per second whilst still maintaining accuracy will use fewer compu-
tational resources. Figure 6 suggests being able to use a time step

1 . . ..
of 1ss whilst maintaining accuracy.

4.2 Test PBDM Evaluations

Two PBDMs from the literature are evaluated in the framework
using both the unsteady 3D cantilever beam scenario and reference
PBDM from Section 4.1.2 as the appropriate components in the
framework.

4.2.1 Evaluation 1

A mass-spring system (MSS) that uses a semi-implicit Euler in-
tegration method [NMK*06] is evaluated in the proposed frame-
work. The mesh can be discretised as in Figure 7 into cubic unit
cells. There are discrete masses at each corner of the cube with
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state. The solid black indicates value of convergence for the trialed
timesteps.
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Figure 7: A 8 X3 X 3 node cantilever mesh with cubes as unit cells.
The springs lie across each cell’s edges and face diagonals.

springs along each edge and face diagonal. In this setup, the (lin-
ear) springs all have the stiffness coefficient k arising from the iden-
tity [KNS15]: E = 2.5%, where a is the length of the cubic unit cell.
It is reiterated that the modelled material is homogeneous, isotropic
and has a Poisson’s ratio v = 711.

Using a cubic unit cell for the beam can, if the discretisation is
of low enough resolution, cause the beam to (incorrectly) not keep
its neutral plane [KNS15]. The neutral plane is the surface between
the outer surfaces (that are under compression or tension) that is
not under stress. Constructing an smaller mesh (of one fewer node
in each Cartesian coordinate direction) to lie inside the outer mesh,
such that each node of the smaller mesh lies in the centre of each
cubic unit cell of the outer mesh, overcomes this problem as springs
are now more concentrated around the neutral plane of the beam.
See Figure 8.

The semi-implicit Euler method is conditionally stable [Nii99]
and the problem setup results in a numerically stiff system; the
choice of dt depends on the point masses and the stiffness of the

springs:
m
dt < C|—,
k
(© 2018 The Author(s)
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Figure 8: The smaller mesh inside the outer mesh provides more
resolution per unit length. The spheres represent nodes that are
fixed (do not move).
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Figure 9: The MSS is integrated using a semi-implicit Euler
method. Above: The error measure is plotted against the reference
NLFEM for different resolutions. Below: The ISO18571 is used to
score the test (MSS) signals against the (NLFEM) reference signal.

where C is a constant [MHTGOS]. The integration is performed at
fixed time intervals of dt = 1;_05 to accommodate this. The results
for different discretisations are plotted in Figure 9 against the refer-
ence NLFEM outlined in Section 4.1.2. Higher resolution discreti-
sations rendered the system unstable. Either a change in material
properties or the adoption of another integration method is needed
if either a higher resolution discretisation of the mesh or a greater
time step is desired. The scores are greatest for the discretisation of
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17X 5x 5 nodes: ejso18571 = 0.985, which is excellent according
to ISO18571.

4.2.2 Evaluation 2

A second evaluation of a test PBDM in the framework is the
same MSS as in Section 4.2.1, except now the equations of mo-
tion are solved using a so-called variational implicit Euler method
[MTGG11]. A discretisation of Newton’s second law (f = ma) us-
ing the implicit Euler integration scheme is

-2q,,+q,,_
M A= = (g, ®)

where M is a (diagonal) mass matrix. Setting x := ¢,,,; and y :=
24, —q,,_ and rearranging (8) gives

M(x~y) = d*f (x). ©)
The solutions of (9) correspond to the critical points of

8(6) = 3= Mix—y) +dPE(), (10

where E is a potential energy field such that f(x) = —VE(x)
[MTGG11] [LBOKI13]. The task is then to minimise (10).

Liu et al. reformulate E by introducing a set of rest-length spring
directions d; (that must be found at each simulation step) and set-
ting the system’s potential energy to be the sum of each individual
spring’s potential energy. The task is then to optimise for both un-
knowns x and d. A block-coordinate descent (or alternating local-
global) method is employed to solve for each of x and d individu-
ally in an alternating, two-step fashion by fixing the other unknown,
giving fast and stable results [LBOK13].

Since the method is implicit, it is unconditionally stable and so
the time step is set to df = &s, with 10 iterations of the solver
per update (as set as default by the authors). The same procedure
as in Section 4.2.1 is carried out, with signals given in Figure 10
together with error metric scores. The scores are excellent for a
discretisation of at least 17 X 5 X 5 nodes, with the optimal score
being for the 29 x 8 x 8 resolution. Liu et al. acknowledge that, for
a swinging curtain scenario, just one iteration yields a “plausible”
simulation but lacks particular detail and looks “a bit inflexible’.
Whereas for 100 or 1000 iterations of the solver “it is difficult to tell
the difference” from their reference simulation. These observations
are reflected in the error metric scores for this test 3D cantilevered
beam scenario on a 17 X5 X 5 mesh:

Iterations | ejso1gs71 | Grade
1 0.910 Good
5 0.984 Excellent
10 0.984 Excellent *
100 0.984 Excellent
1000 0.984 Excellent

4.3 Analysis

The smaller, inner mesh of section 4.2.1 produces an excellent
grading (0.985) under the ISO18571 error metric, yet could be
closer still to a maximum score of 1. This value takes into account
any signal fluctuations corresponding to unavoidable factors such
as numerical error. Such a high score as 0.985 is not an unrealis-
tic expectation since the expressions are derived analytically in the
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Figure 10: The MSS is updated using a block-coordinate descent
method [LBOKI13]. Above: The Hausdorff distance for displace-
ment is plotted against time for the test (MSS) signals at different
resolutions together with the (NLFEM) reference signal. Below:
The ISO18571 is used to score the test signals against the refer-
ence signal. Further resolutions are plotted that are absent in the
above graph.

literature [KNS15], matching the parameters of MSS to NLFEM.
The smaller mesh is offset (see Figure 8) and, upon reconstruction
to the larger, outer mesh, the fixed surface could exhibit stiffer be-
haviour than desired (particularly at the fixed face) that in turn in-
fluences the results. A larger resolution is unstable in this scenario
but in combination with smaller timesteps a better result could be
produced. This is a trade-off with performance.

The PBDM evaluated in Section 4.2.2 is a more approximate
model to the aforementioned model; it formulates an optimisation
problem that iteratively solves for a minimal result but is not guar-
anteed to reach a convergent solution for any number of iterations.
A loss of energy is observed in Figure 10; the measured error does
not return to O as in the reference model. This is due to the implicit
integration method used in combination with the minimisation per-
formed in the iterative solver. Nevertheless, the authors set the it-
eration count to 10 as it offers “the best trade-off between speed
and [visual] quality”. Increasing or descreasing the number of iter-
ations generally increases or decreases the accuracy, respectively.
However, to achieve real-time performance in an application, the
iteration count cannot be too large. This is one trade-off that must
be leveraged and the effects can be seen directly within the frame-
work in the output scalar value. The framework allows the user to
achieve their desired performance goals whilst still having a quan-

(© 2018 The Author(s)
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titative grasp on the accuracy of the PBDM being developed. More-
over, we can now see that in these setups, by direct comparison, the
local-global iterative solver (with 10 iterations) of Section 4.2.2 is
marginally less accurate than the semi-implicit integration scheme
of Section 4.2.1: 0.984 < 0.985. Whereas at just one iteration, the
method is less accurate than with 10 iterations: 0.910 < 0.984.

In the evaluations presented, the Hausdorff distance, popular in
computer vision and shape matching, in particular, is used as the er-
ror measure at each update step. Assuming no a priori knowledge
of the deformation, every node must be evaluated at each step. This
makes for an O(nz) algorithm and is not always suitable for real-
time applications. Otherwise, the user’s knowledge of the specific
scenario can allow for fewer nodal comparisons, reducing compu-
tational costs. Nevertheless, faster algorithms exist that can reduce
the computational expenses [ZHH"17].

The scenario time of the 3D cantilever is chosen as 5 seconds
to balance the allowance of a large, unsteady deformation over a
substantial period of time with a fast quantitative evaluation of ac-
curacy. That is, the time to generate quantitative results depends
on how long the scenarios are set to run for. A long scenario time
can hinder the user from getting rapid feedback before optimising
the test PBDM. This reduces productivity in using the framework.
That said, the 3D cantilever is unsteady and begins to oscillate. Any
phase errors might be neglected because they have not yet estab-
lished themselves before the scenario comes to a finish. This is a
trade-off that is acceptable since it is assumed that a deformation
that lasts longer than five seconds is not one that is typical in inter-
active CG applications. Nevertheless, more suitable scenario com-
ponents can and should be substituted in as needed.

Using the displacements from the initial (undeformed) positions
could possibly give falsely positive error metric results if the error
measure is not a signed measure. In the case of two bodies de-
forming in opposite directions from their identical initial positions
before return back to those initial positions, the error measure, be-
ing unsigned, would produce similar results. If a signed measure is
used instead, the ISO18571 error metric could potentially take this
antiphase into account when evaluating the phase error of the sig-
nals. As such, more suitable error measure can easily be substituted
into the framework to overcome this.

5 Conclusions

A software framework has been presented that allows the objec-
tive evaluation of a proposed PBDM in CG, which can also have
an applicability to fields outside of CG. The use of a single scalar
value for accuracy provides an objective measure in a field that
mostly uses subjective, qualitative validation through visual plau-
sibility. The framework is composed of components that are con-
nected in a software architecture, such that each component is a
replaceable modular unit that exposes some necessary functional-
ities through its interfaces. A key component of the framework is
the test PBDM component that allows the user to test any PBDM
within the framework. The test PBDM is run through a test sce-
nario in which the deformed positions are compared with a ref-
erence deformation over a prescribed time period. The resulting
quantity scores the level of agreement between the two deforma-

(© 2018 The Author(s)
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tions and each score is categorised by a preset ISO standard that
describes how good the agreement is.

For the evaluations conducted, the reference deformation is pro-
vided by what is established as the “gold standard”: the nonlinear
finite element method solving the principle of virtual displacements
from elasticity. Two competing PBDMs, popular in the literature,
have been evaluated within the proposed framework, giving scores
that allow the direct comparison of PBDMs against one another.

The software framework allows for the fast development of test
PBDMs by providing quantitative validation that is not limited by
the time it takes to get qualitative validation from a field expert.
The fast quantitative validation allows for an immediate, progres-
sive iteration on the development of test PBDM’s deformations to
match the reference PBDM’s deformation as close as possible. For
example, parameter configurations specific to a PBDM can be tri-
aled and improved in response to the resulting accuracy provided
by the framework. As future work, an extension to the framework
includes an automated, optimisation feedback loop that allows for
the determination of best-fit parameters of a test PBDM to the ref-
erence PBDM. Moreover, the use of the framework as a diagnostic
tool to help identify the sources of errors is something to be ex-
plored.

In future the framework will also contain a greater number of
scenarios that will all contribute to one final output quantity for ac-
curacy. The scenarios will be chosen such that they cover a range of
different deformation types. The extension of the framework to the
fields of fluid simulation and fracture simulation is possible without
a fundamental change in design.
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