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Abstract

We address the task of computing solutions for a separating fluid-solid wall boundary condition model. We present an embar-
rassingly parallel, easy to implement, fluid LCP solver. We are able to use greater domain sizes than previous works have shown,
due to our new solver. The solver exploits matrix-vector products as computational building blocks. We block the matrix-vector
products in a way that allows us to evaluate the products, without having to assemble the full systems. Any iterative sub-solver
can be used. Our work shows speedup factors ranging up to 500 for larger grid sizes.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Computational Geometry and Object
Modeling—[Physically based modeling] Computer Graphics [1.3.7]: Three-Dimensional Graphics and Realism—[Animation]

1. Introduction and Past Work

We use Linear Complementarity Problems (LCPs) to model sep-
arating fluid-solid wall boundary conditions. The LCP boundary
condition model is a recent approach, and so literature on the sub-
ject is still scarce. Our work is inspired by Batty et al [BBB07,
CM11]. However, we derive the model here differently, using a
finite volume setting. For the scope of this paper, we will focus
solely on LCP relevant work. We refer to the book by Bridson for a
more general overview of methods for fluid simulation in Computer
Graphics [Bri0O8].

Our contribution is an easy to implement numerical method for
solving the LCP model. We demonstrate our method by solving
problem sizes not possible in the work of [BBBO07], due to the
scaling of the PATH solver.

In the fields of Computer Graphics and Mechanical Engineering,
the incompressible Euler equations are used to model fluids [FP99,
Bri08, VMO7]

N (1)
V-u=0, (1b)

where p is mass density, u is the velocity field, p is the pressure
field and f is the external force density. Boundary conditions are
often modelled as p = 0 on free surfaces between fluid and vacuum
and u-n = 0 between fluid and static solid walls with outward unit
normal n. These boundary conditions are often termed slip wall
conditions. Another often used boundary conditions is the no-slip
wall condition u = 0. When applying coarse computational meshes
both the slip and no-slip wall conditions tend to make the fluid stick
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unrealistically to the solid walls. This is illustrated in Figure 2 and
3.

The fluid-solid wall boundary conditions may be replaced with
a different model that allows for the fluid to separate at the walls.
This leads to a new type of boundary condition that can be mathe-
matically stated as

0<p L1 wun>0. 2)

The notation 0 < x L y > 0 means x is complementary to y. Com-
plementarity means that when x > 0 then y = 0, and that wheny > 0
then x = 0 [NE15]. The separating model is derived in Section 2.
From a computational viewpoint, the major change is that a lin-
ear equation will be replaced by a linear complementarity problem
(LCP). The LCP is a much more computationally heavy and diffi-
cult problem to solve than the linear equation. Hence, it is compu-
tationally infeasible to use the separating boundary wall condition
for high resolution domains. Our contribution in this work provides
a computationally fast solver based on a Newton method, which we
derive.

Existing LCP solvers such as PATH are generalized and do not
exploit the numerical properties of the fluid problem. Our method is
specialized and scales beyond previously presented work [BBBO7].
Geometric multigrid methods based on Quadratic Programming
(QP) problems [Man84] are complex to implement, convergence
behaviour is not well understood, and are only applicable to collo-
cated regular grids [CM11]. Our Newton method uses an algebraic
approach and can therefore be applied to unstructured meshes. In
that aspect, our approach is a more general-purpose alternative
compared to other work. As we demonstrate in our results, our con-
tribution is easy to apply to an existing fluid solver, that is based
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on using a Preconditioned Conjugate Gradient (PCG) method for
solving the pressure projection. However, in theory we can exploit
any existing Poisson sub-solver functionality, this would in prin-
ciple include a multilevel Poisson solver resulting in a Multilevel
Newton method. For our implementations, we used PCG as our
proof-of-concept sub-solver. If one already has a fluid solver then
one is only required to implement the outer Newton loop and a
proper line-search method. For fluid problems, our Newton method
approach has global convergence and experimentally validated lo-
cal convergence rate that supersedes theoretically Q-linear rate of
previous multigrid work [CM11].

We provide a supplementary code repository [Erl11] contain-
ing Matlab implementations of the Minimum map Newton solver,
along with CUSP (CUDA/C++) based implementation. The code is
meant to make validation of our work easier.

2. Pressure Projection Formulated as a LCP

We present the ideas in the context of a single-phase flow in
vacuum. The ideas extend to general multiphase flow and dy-
namic solid wall boundary conditions [BBB07, CM11]. Exces-
sively coarse grids are favored in Computer Graphics to keep com-
putational cost down. However, excessive grid coarseness presents
an issue when using the solid wall boundary condition u-n =0,
resulting in cell-sized thick layers of fluid sticking to the wall. This
is a visually detectable unrealistic behaviour. To combat this effect,
it has been proposed to change the solid wall boundary condition
to

0<p L1 wun>0. 3

This allows the fluid to separate from the wall. Condition (3) is a
complementarity condition, requiring that if u-n > 0 then p = 0.
This makes the boundary interface behave like a free surface. If,
however, p > 0 then u-n = 0 and the fluid is at rest at the wall and
there must be a pressure at the wall. The complementarity bound-
ary conditions is well suited to capture the expected macroscopic
fluid behaviour on excessive coarse grids. However, it completely
changes the mathematical problem class of the pressure solve.

Let us briefly revisit a traditional pressure solve step [BriO8].
During the last sub-step of the fractional step method we need to
solve

At
= - va, (4a)
vl =0, (4b)
where u" ! is the final divergence free velocity of the fluid and u’

is the fluid velocity obtained from the previous step in the fractional
step method. The time-step is given by Az. Substitute (4a) in (4b)
to get

V~un+1:V-u'—%V2p=0. 3)

Introducing the spatial discretization, this results in the Poisson
equation which we for notational convenience write as
Ap+b =0, (0)

where p is the vector of all cell-centered pressure values and

A= {—%Vz} and b = {V -u’'}. Notice the SI-unit of the Pois-

son equation is s~ | In some work the scaling % of the A-matrix

is by linearity of the differential operator moved inside the oper-

ator, and the pressure field is redefined as p + % in this case,

A= {—VZ}. Our solver works independently of the choice of

the unit. The matrix A is a symmetric diagonal band matrix. Us-
ing low order central difference approximations in 2D, A will have
5 bands when using a 5-points stencil. In 3D, A will have 7 bands
for a 7-points stencil. For regular grids, all off-diagonal bands have
the same value. Further, A is known to be a positive semi-definite
(PSD) matrix, but adding the boundary condition p = 0 ensures
that a unique solution can be found. Once the pressure field p has
been determined by solving (6), it can be used to compute the last
sub-step of the fractional step method (4a).

Let us revisit the complementarity condition and examine what
happens if "0 > 0 at a solid wall boundary. To start the anal-
ysis, we examine what happens with (1b) in an arbitrarily small
control volume V around a solid wall boundary point,

/v-u”+‘dv:j§u”+‘~nds>o. 7
\%4 S

The last inequality follows from the assumption that u".n>0.

This mean that if we pick the row, let us call it j, of the discrete
Poisson equation corresponding to the solid wall boundary point
we are looking at

Ajp+b;>0. ®)
If on the other hand u"™! - n = 0 at the solid wall, we are back to
Ajp+b;=0. 9
Following this, we rewrite Condition (3) as the LCP
0<p L1 Ap+b2>0. (10)

We now move on to the derivation of our numerical contribution in
this work.

3. The Minimum Map Newton Method

The core contribution of this paper is a robust, efficient and fast
method for solving the LCP introduced by Equation (10). In the
following we solve for x = p. That is (10) becomes

y=Ax+b>0 (11a)
x>0 (11b)
xTy:O (11¢)

Using the minimum map reformulation of (11) we have the root
search problem where H : R" — R" is given by,

h(y1.x1)
Hx)=| ... |=o. (12)

h(yVHX”)
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where h(a,b) = min(a,b) for a,b € R. Let y = Ax+b soy; =
AiiXi+bi+Y i Aijx;, thus

H;(x) = h(yi,x;) (13a)

= min <<Aiixi+b[+ZAinj> ,X,’) s (13b)
J#i

The basic idea is to use Newton’s method to find the roots of Equa-

tion (12). Newton’s method requires the derivative of H(x), since

H is a non-smooth function we need to generalize the concept of a

derivative [Pan90].

Definition 3.1 Consider any vector function F : R" — R", then if
there exists a function BF(x,Ax) that is positive homogeneous in
Ax, that is, for any o0 > 0

BF(x,0Ax) = aBF(x,Ax), (14)

such that the limit

lim F(x+ Ax) — F(x) — BF(x,Ax)

—0 Is
e [Ax || (15

exists. Then we say that F is B-differentiable at x, and the function
BF(x,-) is called the B-derivative.

The function H;(x) is a selection function of the affine functions, x;
and (Ax+b);. Each selection function Hj; is Lipschitz continuous,
meaning that H(x) is also Lipschitz continuous.

According to Definition 3.1, given that H(x) is Lipschitz
and directionally differentiable, H(x) is B-differentiable. The B-
derivative BH(x, -) is continuous, piecewise linear, and positive ho-
mogeneous. Observe that the B-derivative as a function of x is a
set-valued mapping. We will use the B-derivative to determine a
descent direction for the merit function,

B(x) = %H(X)TH(X). (16)

Observe any minimizer of (16) is also a solution to equation (12).
We use this B-derivative to formulate a linear sub-problem, the so-
lution of this sub-problem will always provide a descent trajectory
to (16). The largest computational task in solving the non-smooth
and nonlinear system (12) is solving a large linear system of equa-
tions. A similar approach is described in [Bil95]. The generalized
Newton equation at the k™ iteration is

H(x) + BH(x*, Ax") = 0. (17)
Each Newton iteration is finished by updating the previous iterate,
X = Xk Ak, (18)

where ¥ is the step length and Ax* is the Newton direction. The
following theorems, see [QS93, Pan90], guarantee that AXF will al-
ways provide a descent direction for the merit function 8(x).

Theorem 3.1 Let H : R” — R” be B-differentiable, and let 0 :
R" — R be defined by
1

B(x) = EH(X)TH(X). (19)

Then 0 is B-differentiable and its directional derivative at x* in di-
rection AxF is

Bo(x*, Ax") = H(x")"BH(x*, Ax"). (20)

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

Moreover, if (17) is satisfied, the directional derivative of 0 is
BO(x*, Ax') = —H(x")TH(x"). @1
Details on proof are in [NE15].

Observe that a direct consequence of (21) is that any solution
AX¥ of the generalized Newton equation (17) will always provide a
descent direction to the merit function 6(x¥). The following theo-
rem shows that even if we solve Equation (17) approximately, we
can still generate a descent direction, provided the residual is small.

Theorem 3.2 Assume that the approximate solution AX* satisfies
the residual equation,

" = H(x") + BH(x', Ax"). 22)

Let 8(x) be defined by Equation (16). The direction Ax* will always
provide a descent direction for 8(x*) provided that

IH(x) +BHX, A [|< v [ HK) |, (23)
for some positive tolerance y < 1.
Details on proof are in [NE15].

We will now present an efficient way of computing the B-
derivative. Given the index i we have,

H;(x) = {y’ RN 24)
x; ify; >x;
Recall that y = Ax +b. All of these are affine functions and we can
compute the B-derivative BH;; = %Ax ; as follows [Sch94]
J
(1) Ify; < x; then

oH;

= A 25)

(2) Ify; > x; then

aHi_{l ifj=i 26)

ox; " )0 otherwise

We define two index sets corresponding to our choice of active se-
lection functions,

A={ilyi<xi}and F={i|y; > x;}. 27)

Next, we use a permutation of the indexes such that all variables
with i € F are shifted to the end. Hereby we create the imaginary
partitioning of the B-derivative,

koA ky_ |Aaa AAf} {AX];\}
BH(x",Ax") = . 28
)= [Rea A [

Notice this convenient block structure with A 4 4 being a principal

submatrix of A. The matrix Iz~ is an identity matrix of the same
dimension as the set F.

If we use the blocked partitioning of our B-derivative from (28)
then the corresponding permuted version of the Newton equa-
tion (17) is

Aaa Aar] [ [HAK 29)
0 Irr AX]}_- H]:(Xk) '
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Observe that this reduces to
Al = A 7HE —Hy. (30)

Our problem is reduced to a potentially smaller linear system in
Ax’f4. Whether an exact solution can be found for this reduced sys-
tem depends on the matrix properties of the original matrix A. For
fluid problems, A is a symmetric positive semi-definite matrix, im-
plying that the reduced matrix inherits these properties and one
might end up with a singular system. As we have already shown,
however, we do not need an accurate solution to guarantee a de-
scent direction. In practice, we have found GMRES to be suitable
as a general-purpose choice, although not optimal. See Section 4
for more details on implementing sub-solvers.

To achieve better global convergence, we perform an Armijo
type line search on our merit function 6(-), this is common prac-
tice in numerical optimization [NW99]. The ideal choice for a step
length ¥ is a global minimizer of the scalar function y(t) = 8(xz)
where x; = x* +TAX*. In practice such a minimizer may be expen-
sive to compute, requiring too many evaluations of 8(-) and possi-
bly BO(:,-). The Armijo condition stipulates that the reduction in
y(t) should be proportional to both the step length T and the di-
rectional derivative Vy(0) = BO(x*, Ax). For a sufficient decrease
parameter value o € (0,1) we state this as

w(t) < y(0) + ot Vy(0). 31

To avoid taking unacceptably short steps, we use a back-tracking
approach and terminate if T becomes too small. Now the Armijo
condition implies to find the largest i € Z such that

v() < y(0) + at“ Vy(0), (32)

where T = Bh’co, 7 =1, and the step-reduction parameter o <
B < 1. Typical values used for o and B are: v = 10™% and p =
% [NWO99]. We use a projected line search to avoid getting caught
in infeasible local minima [EOO08]. We project the line search it-
erate x; = max(0,x* + tAx*) before computing the value of the
merit function y(t) = 6(x¢). Our approach is illustrated in Algo-
rithm 1. The back-tracking line search method we have outlined is

Algorithm 1: Projected Armijo back-tracking line search

Data: x* and Ax®
Result: T such that the Armijo condition is satisfied.
begin
(o, Vo) «— (8(x"), BO(x", Ax"))
T 1
while Forever do

X1 — max((),xk +’EAXk)

Y <— 0(xq)

if yr < yp + otV then

| returnt

end

T+— Bt
end

e 0 NN AW N =

—
-

end

—
8

general and could be used with any merit function. In rare cases

one may experience that T becomes too small. Thus, it may be
beneficial to add an extra stop criteria after line 9 of Algorithm 1
testing whether T < §, where 0 < 8 < 1 is a user-specified toler-
ance. We combine all the ingredients of the minimum map Newton
method into Algorithm 2. The Newton equation can be solved us-

Algorithm 2: Minimum map Newton method

Data: A, b, x°
Result: An x* such that it satisfies the termination criteria.
1 begin
2 X x0
3 repeat
4 ¥y — Ax*+b
5 H* «— min(y*, x)
6 A+— {i|yi <x;}
7 F—A{ilyi > xi}
8 solve AAAAx];l = AAFHI} — H’j4
9 % «— projected-line-searchy(...)
10 ¥ Xk R Axk
11 k< k+1
12 until x* is converged
13 end

ing an iterative linear system method. We have had some success
with the two Krylov subspace methods: preconditioned conjugate
gradient method (PCG) and generalized minimal residual method
(GMRES) [Saa03]. GMRES is more general than PCG and can be
used for any non-singular matrix whereas PCG requires that A is
symmetric positive definite. PCG cannot be used for the full New-
ton equation, in case of the minimum map reformulation. However,
for the Schur reduced system of Equation (30), PCG may be appli-
cable if the principal submatrix is symmetric positive definite. This
is the case for the specific fluid problem studied in this work.

A clear benefit of using an iterative linear solver is that the full
A 4 4 matrix never needs to be explicitly assembled. We only need
to know the matrix-vector products, which can be evaluated directly
from the finite difference schemes of the fluid solver. We exploit
this to implement a fast solver, as demonstrated in Section 4.

We found that the Newton method can be started using the value
xo = 0. To increase robustness, we use a combination of termina-
tion criteria. An absolute termination criteria,

8(x* 1) < eqps, (33)

for some user-specified tolerance 0 < €, < 1. A relative conver-
gence test,
8(x")

00 1) —0(x")| < e 00|, (34)

for some user-specified tolerance 0 < € < 1. A stagnation test to
identify precision issues,

kt1

k
i —X;

max |x < £y, (35)
1
for some user-specified tolerance 0 < &gy < 1. And lastly, a sim-
ple guard against the number of iterations exceeding a prescribed

maximum to avoid infinite looping.
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4. Parallel Implementation of Iterative Sub-Solvers

We now turn towards making an embarrassingly parallel imple-
mentation of our proposed Newton method. We selected CUSP as
proof-of-concept for the parallelization due to its high abstraction
level and low learning curve. Other alternatives exist, such as Vien-
naCL and cuSPARSE.

From an algorithmic viewpoint, it is preferable to solve the re-
duced system (30), and not the full system (29). Mainly because
the reduced system will have less variables, but also because the
reduced system is symmetric positive semi-definite in the specific
case of the fluid problem. So in the case of the reduced system, we
can apply PCG. Although the reduced equation is trivial to imple-
ment in a language such as Matlab, it is not easily done in CUSP
as there is no support for index sets and indexed views of matrices
and vectors. For that reason, we have opted for a different imple-
mentation strategy which we will now outline. The idea consists of
having binary masks for the free and active index sets and then use
element-wise multiplications to manipulate apparent matrix-vector
multiplications on the full system to appear as matrix-vector multi-
plications on the reduced system. This is rather technical and CUSP
specific and has no implications on the algorithmic contribution of
our work. However, we include the details here to facilitate repro-
duction of results.

Let the masks of active and free sets be defined as the binary
vectors a,f € R” such that

1 ifi

a={! HicA (36a)
0 otherwise
1 ifieF

= MES (36b)
0 otherwise

Notice that by definition a’f=0. Also, we require strict comple-
mentarity meaning if a; >0 —f; =0 and f; > 0 — a; = 0, but
never a; = f; = 0. Further, given any mask vector v and a vector w
we define q = v ® w as the element-wise multiplication

q; = V;W; Vie{l,...,n} 37

In particular, we observe that w = a ® H produces a vector where
for i € F then w; = 0 and for i € A then w; = H;. We now initialise
the PCG solver invocation by computing a modified right-hand-
side, q, for the full system in (29)

Aaa Aur| [A] _ [HARY 38)
0 Irr] [axy Hp (X))
~—— —
=M =Ax =q

The modification accounts for right-hand side changes in (30),
qd=a®(A(foH))—H. (39)
This is shown in CUSP code here

// v [0,—Hz|=[0,qr]=F .x q
cusp::blas::xmy(free_mask, q, v);
/7 w<—Al0,qr]| =Av
cusp::multiply (A, v, w);

/) Vi [-AarHE 0] =A % w
cusp::blas::xmy(active_mask, w, v);
// W [—H4,00=[qa,00]=A .x q
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cusp::blas::xmy(active_mask, q, w);
77 Wi [q,0] = [A4rHr —H4,0] =w—v
cusp::blas::axpy(v, w, —1);

Listing 1: The initialization of the matrix-vector product op-
erator, creating a “virtual” Schur complement q:4 =-—-Hy—
(—AurHF). This is used when solving for Ax* with PCG.

Next we need to make sure that the matrix-vector product op-
erator used by the iterative method in PCG gives the result of the
reduced system, even though we are working on a full system. First
we define the matrix-vector product operator as

MAx=a® (A(a®Ax)) —foH (40)

Now we can solve the reduced system by passing M’Ax operator
and q’ vector to the PCG solver. Observe that using the operator and
modified right hand side, we do not need to actually assemble the
reduced system. The drawback is that we have to use extra storage
for keeping the modified right hand side vector and for keeping
temporaries when evaluating sub terms of the linear operator. The
equivalent CUSP code is shown here

1/ V< [Ax 4,0]

cusp::blas::xmy(active_mask, dx, v);

/] W<— AAX 4

cusp::multiply (A, v ,w);

I/ W [AaaAX,0l=wq=A % W

cusp::blas::xmy(active_mask ,w, w);

// v+ [0,—Hz]=F .x q

cusp::blas::xmy(free_mask, q, v);

/W [Aaadxa,—Hr]=v+w

cusp::blas::axpy(v, w, 1);

Listing 2: Short presentation of the inner works of the linear
matrix-vector product operator M’ AX used when solving through
PCG.

Usually for fluid problems, an incomplete Cholesky precondi-
tioner is used. Although the preconditioner costs extra computa-
tion, it can often reduce the number of needed PCG iterations by
two orders of magnitude. A preconditioner is essentially a matrix/-
linear operator P, such that P ~ A~!. When used in connection
with PCG, this can be thought of as solving a left preconditioned
system like

PAx=Pb @1
Clearly if we know P, then a left preconditioner for our reduced
system is given by
PuaA ANy =P o4 (AgrHF —Hy) 42)
Hence, a modified preconditioner can be passed to PCG as a linear
operator that will compute
P (r)=a®(P(a®r))+far 43)

for some vector r only known internally by PCG. With all our op-
erators in place, we observe that the full modified system actually
solved by PCG — written using the imaginary partitioning — is

Aaa 0 ][AxY] _ [AarHFREY) —HaK (44)
0 Irr AX]}_- _H]-‘(Xk)
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The corresponding left preconditioner is given by

Pasa O
5 9

Hence, the parallel operator for evaluating P’ r is given by
Pr=A®P(A®r))+For (46)

The CUSP implementation is very similar to the M’ Ax-operator,
so we omit it. Of course, neither (44) nor (45) are ever assembled,
instead we apply the linear operators as outlined above. This ap-
proach requires certain assumptions, such that the preconditioner
for A can be reused for each Newton iteration, rather than rebuild-
ing a preconditioner for each Newton iteration.

For the line-search method in Algorithm 1, the directional
derivative of y is needed for the sufficient decrease test. Part of
this evaluation involves the B-derivative of the minimum map re-
formulation H. This can be evaluated using the same principles as
for the linear sub system solver. This is shown in below.

// v+ AAx

cusp::multiply (A, dx, v);

/] V= [va.0l=A % v
cusp::blas::xmy(active_mask, v, v);
/! W [0,dxr]=F .% AX
cusp::blas::xmy(free_mask, dx, w);
7/ v+ BH(X*,AXF) = [v.4,0] +[0,dx 7] = v+ w
cusp::blas::axpy(w,v,1);

Listing 3: Short presentation of the inner works of the B-derivative
operator used when evaluating BH(., .).

5. Extension to Mixed Linear Complementarity Problems

In Section 3 we outlined a generic LCP solver. However, revisiting
the ideas of Section 2 we observe that it is only on the solid wall
boundary conditions that we need to solve an LCP. In the interior
of the fluid domain, we have a linear system. This means we are
solving a mixed LCP (MLCP). The presented LCP solver is easily
enhanced to solve the full fluid MLCP. Let the index set, S, of solid
wall boundary pressure nodes be

S ={i | iis asolid wall boundary cell} (47)
and redefine the active and non-active index sets as
A={ilyi<xi} USand F={i|y; >x;} \S. (48)

Everything else remains unchanged.

6. Results, Experiments and Discussions

For all our numerical studies, we re-implemented the 2D FLIP
solver accompanying [BBBO7]. Figure 1 illustrates how we
changed the solver to include the LCP.

Still frames from some of our test scenes in the supplementary
movies | are shown in Figures 2 and 3 illustrating the difference

T https://www.youtube.com/playlist?list=
PLNtAp--NfuipGA2vXHVV60Pz20N4xIwA0

Compute CFL

Matrix Assembly
Advect Particles

CUSP
Precond

l\grvton ‘

Advect Velocity

PSOR
Integrate External Forces

Reconstruct Free Surface CUSP

Precond

pouley dels euonoelq

Pressure Solve CUSP Solvers

Extrapolate Velocities
over Free Surface

Figure 1: Graphical illustration of how we changed the 2D fluid
simulation loop from [BBBO7]. Red (CPU only) and purple (GPU
accelerated) parts of the simulation loop are the ones we address in
this work. We consider CUSP preconditioners: Identity, Diagonal,
Bridson, Scaled Bridson and Ainv Bridson and CUSP solvers: CG,
CR, GMRES, and BiCGStab.

CUSP Solvers

in motions. The scene in Figures 2 and 3 uses a grid resolution of
80 x 80 (6400 variables), with 20395 and 17676 liquid particles re-
spectively. We only show the result from minimum map Newton
running on GPU device, as there was no visible difference between
host CPU and GPU device. We notice that when using the slip con-
ditions, the liquid will stick to the surface around the boundaries
of both circles, whereas the separation wall conditions allow the
liquid to fall freely, as would be expected.

The PATH solver was used for solving the LCP of a 2D fluid
simulation of relatively small sizes in [BBBO7]. The example from
[BBBO7] appears to be a 2D 40x40 grid. We have successfully done
1024x1024 grid computations.

In [CM11] the GPU accelerated LCP was found to be approxi-
mately 12% slower than a standard PCG solver. In our studies we

found that the minimum map Newton solver to be slower than the
PCG as follows

Grid Size Percentage
64x64 15%
128x128 25%
256x256 15%
512x512 16%
1024x1024 | 5%

We found the slowdown percentage varies widely with grid size
and the scene setup, but in general we found it to be within 5-25%
range.

Chentanez ea [CM11] report that the GPU accelerated solver
uses approximately 21 msecs for 643 grid resolution, and 122
msecs for 128 grid points. Their 643 resolution have the same
number of cells as our 2D 5122, However, our solving times are
closer to 3.5 seconds for this resolution. We believe that the large
discrepancy between their and our work may be caused by us us-
ing more aggressive termination criteria. It is not clear which merit
functions or termination criteria were used in [CM11], making one-
to-one comparisons problematic.

(© 2017 The Author(s)
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Figure 2: Selected frames from the supplementary fluid simulation movie comparing traditional slip conditions using a PCG solver (top row)
against separating solid-wall model using our minimum map Newton (bottom row).
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Figure 3: Selected frames from the supplementary fluid simulation movie comparing traditional slip conditions using a PCG solver (top row)
against separating sold-wall model using our minimum map Newton (bottom row).
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5 GPU Speedup Factors
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Figure 4: Speedup factors (cpu time divided by gpu time) for in-
creasing grid sizes. We observe an increasing speed-up with grid
sizes. Clearly the minimum map Newton method benefits more from
the parallelization. For a grid of size 512x512 we achieve app. 500
speedup factor.

For the results presented here, we used a Intel(R) Xeon(R) CPU
E5-2620 0 @ 2.00GHz and a GeForce GTX 1080. The point of
our work is that one can make an easy implementation of GPU
LCP solver by simply implementing the operators from Section 4
in a high-level GPU matrix library such as CUSP. Hence we com-
pare our CUSP implementation using a CPU against using a GPU.
We also compare against solving the usual slip conditions with a
PCG solver to illustrate the computational tradeoff between slip-
conditions and separating wall conditions.

In all our experiments we used the following setup of our solvers.
We applied a maximum Newton iteration count of 10, and used ab-
solute, relative and stagnation termination thresholds of 1073 , and
Y= 0.01 (from Theorem 3.2). We used PCG as the sub-solver for
the Newton method giving it a maximum iteration count of 1000
and absolute and relative termination criteria of 10™>. We used the
same settings when solving for slip boundary conditions with PCG
(more details in Appendix. We used a maximum line search itera-
tion count of 100, and B = 0.5 and a0 = 1073 (see Algorithm 1).

Our experiments with using a preconditioner for the Newton
sub-solver showed dramatic improvements in some cases. Unfor-
tunately the experiments also showed that the overall solver fails in
other cases. Hence we have omitted using preconditioning for the
Newton sub-solver in our benchmarks as these does not appear to
be very consistent.

In Figure 4 we have plotted speedup factors for both the PCG
solver and the minimum map Newton solver.

The speedup factors obtained for the minimum map Newton
method range from low 10 and up to approximately 500 for the grid
sizes we tested. The PCG speedups are more modest in the order
of 5 - 50 for the same grid sizes. This demonstrates how imple-
menting four operators in CUSP resulted in GPU implementation
of minimum map Newton method as well as how it compares to a
PCG-GPU counterpart.
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Figure 5: Timings for the PCG solver. Initialization measures time
to convert to CUSP-friendly data structures. Setup includes con-
verting to compressed sparse matrix formats (and write to device
on GPU), and finalization includes converting back to fluid solver
interface (and read from device on GPU). Observe that data trans-
fers have really no impact, and computation time is slightly lowered
on GPU.

A more detailed timing study would be interesting, to reveal how
different parts of the solvers scale with problem sizes.

In Figure 5 we observe that for the PCG solver initialization on
GPU, converting into CUSP data structures and setting up precon-
ditioner are close to the actual computation time. This suggests that
we can not expect to benefit much more from the GPU for the ac-
tual computation, as initialization is close to become the bottleneck.
Further, we notice that data transfer times between CPU and GPU
are really not to be concerned with.

In Figure 6 we observe that the minimum map Newton method
have computation time far above the initialization phase. However,
the setup and finalization on GPU (converting to/from compressed
sparse matrix formats and data transfer times) are different from
CPU measurements on the small-size grids, but no real difference
is noticed for larger grid sizes.

Figure 7 and Figure 8§ display the convergence rates of the two
solvers. The Newton method clearly demonstrate the quadratic con-
vergence rate that we hope to obtain. One should be carefull not
comparing iterations directly with PCG as each Newton iteration
requires an invokation itself for a PCG solver. It is striking that
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Figure 6: Timings for minimum map Newton solver. Initializa-
tion measures time to convert to CUSP-friendly data structures.
Setup includes converting to compressed sparse matrix formats
(and write to device on GPU), and finalization includes convert-
ing back to fluid solver interface (and read from device on GPU).
Observe that data transfers adds a small insignificant overhead on
the GPU and that GPU computation times are order of magnitudes
lower.

1000 PCG iterations are needs even with the best CUSP precondi-
tioner we could tune for (Static scaled Bridson).

7. Conclusion and Perspective

In this work, we developed a non-smooth Newton method for sep-
arating wall boundary conditions in fluid animation. Detailed solu-
tions are described for easy GPU implementation, and actual code
is made freely available for other researchers.

Our experiments show clear evidence that the LCP solver is more
expensive compared to similar sized fluid problems using a tradi-
tional preconditioned Conjugate Gradient solver. However, even
with our limited 2D proof-of-concept visualizations, the LCP ap-
proach shows — in our opinion — very appealing visual results. The
theory and solver implementation we have presented are not lim-
ited to 2D regular grid fluid simulations, and hence should be ap-
plicable to both 3D case and for unstructured meshes. Clearly, the
solver retains its convergence properties. However, it will be inter-
esting to study how the increased problem size in 3D will affect the
presented solver. We leave this for future work.
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Figure 7: We observe that the PCG solver has 50% of convergence
rates close to its median and the remaining 50% are showing a
large variation. In general it appears that PCG does not make much
progress after approximate 900 iterations for a 200x200 grid size.

Convergence rate behaviors of 970 runs of Minimum map Newton for 200x200 grid
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Figure 8: Looking at the distribution of convergence plots from the
minimum map Newton method we clearly see the quadratic con-
vergence rate of the Newton method. We also observe that for a
200x200 grid 4 Newton iterations work quite well for the majority
of runs and 6 iterations appear to be an upper bound.

Making separating fluid solid wall boundary conditions compu-
tationally feasible could potentially open up for using even coarser
grids. It would be quite interesting to validate the boundary model
to see how it compares to traditional slip and no-slip wall con-
ditions. Traditional wall boundary conditions on excessive coarse
grids could suffer from too large loss of momentum or kinetic en-
ergy, which the separating wall condition could overcome by al-
lowing “bouncing” of water instead of perfect inelastic collisions
by the usual slip and no-slip wall conditions.

Computationally feasible complementarity problem solvers for
fluid problems may hold a vast range of possible future applications
and research directions. Obviously for computer animation one
could modify the LCP conditiontoreadp >0 L wu-n—y>0
where 7y could be a time-dependent user-defined “desired” diver-
gence field to provide fluid control parameters. Non-Newtonian
fluids with non-smooth dependencies between viscosity and veloc-
ity gradients may be another phenomenon that could be captured
through complementarity conditions. However, the feasibility of
such an application would require fast scalable solvers for others to
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explore this direction of work. Wall friction modelling with com-
plementarity constraints could also be another approach to model
turbulence.
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