
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2017)
F. Jaillet and F. Zara (Editors)

Implicit Mesh Generation using Volumetric Subdivision

C. Altenhofen1,2 F. Schuwirth1,2 A. Stork1,2 D. Fellner1,2,3

1TU Darmstadt, Germany
2Fraunhofer IGD, Germany

3Graz University of Technology, Institute of Computer Graphics and Knowledge Visualization, Austria

Figure 1: A cartoon-style tree model created with our volumetric subdivision modeling application, converted into a tetrahedral mesh with
our implicit meshing approach and simulated under gravity using a dynamic FEM solver. The fast transition between design and simulation
allows for adapting the model to change its physical behavior. The simulation mesh is updated implictly during this process.

Abstract

In this paper, we present a novel approach for a tighter integration of 3D modeling and physically-based simulation. Instead of
modeling 3D objects as surface models, we use a volumetric subdivision representation. Volumetric modeling operations allow
designing 3D objects in similar ways as with surface-based modeling tools. Encoding the volumetric information already in the
design mesh drastically simplifies and speeds up the mesh generation process for simulation. The transition between design,
simulation and back to design is consistent and computationally cheap. Since the subdivision and mesh generation can be ex-
pressed as a precomputable matrix-vector multiplication, iteration times can be greatly reduced compared to common modeling
and simulation setups. Therefore, this approach is especially well suited for early-stage modeling or optimization use cases,
where many geometric changes are made in a short time and their physical effect on the model has to be evaluated frequently. To
test our approach, we created, simulated and adapted several 3D models. Additionally, we measured and evaluated the timings
for generating and applying the matrices for different subdivision levels. For comparison, we also measured the tetrahedral
meshing functionality offered by CGAL for similar numbers of elements. For changing topology, our implicit meshing approach
proves to be up to 70 times faster than creating the tetrahedral mesh only based on the outer surface. Without changing the
topology and by precomputing the matrices, we achieve a speed-up of up to 2800.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Physically based modeling | Curve, surface, solid, and object representations

1. Introduction

In computer graphics and animation, subdivision surfaces are
widely used to create visually appealing 3D models. When aim-

ing for a plausible physical behavior of those models for 3D ani-
mation or games, physically-based simulation comes into play. In
many cases, it takes several loops of design and simulation to ad-
just a 3D geometry so that it shows the intended behavior in the

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/vriphys.20171079

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vriphys.20171079

C. Altenhofen, F. Schuwirth, A. Stork, D. Fellner / Implicit Mesh Generation using Volumetric Subdivision

simulation. Although subdivision surfaces have proven to be useful
tools in animation, they show some of the same hurdles as other
representation schemes to be overcome for simulation. Usually, the
geometric mesh has to be transformed into a volumetric mesh to en-
able simulation (hereinafter referred to as meshing process). As the
surface mesh just describes the outer boundary of the object, vol-
umetric meshing tends to be a time-consuming process that might
even require manual interaction, often to be re-done with every ge-
ometric change. Since there is no direct correlation between the
design mesh and the simulation mesh, feedback and conclusions
from the simulation results have to be derived manually to improve
the design.

While the engineering community tries to solve this problem
with Iso Geometric Analysis (IGA) [HCB05], we propose a method
more suited for computer animation. By using subdivision volumes
instead of subdivision surfaces for creating the initial 3D object, we
encode the volumetric information into the model directly in the
design phase. Volumetric modeling operations allow the manipu-
lation of the geometry similarly to existing modeling tools, which
use subdivision surfaces, while at the same time keeping the volu-
metric representation consistent underneath. For its diversity and its
ability to handle control meshes of arbitrary topology, we chose the
Catmull-Clark solid subdivision scheme [JM99] for our approach.
Since the outer limit surface is identical to the limit surface of
Catmull-Clark subdivision surfaces [CC78], there is no visual dif-
ference when designing 3D models with either Catmull-Clark sur-
faces or solids. For simulating, the volumetric subdivision scheme
is applied to the control mesh multiple times until the desired mesh
resolution is reached. Afterwards, the mesh can be converted into
a purely tetrahedral mesh if necessary. To run the simulation, we
use a custom GPU-based FEM solver based on [WBS∗13]. How-
ever, as we are able to create a hexahedral or tetrahedral mesh, it
does not require a special solver to be simulated and could also
be fed into open-source or commercial solvers as well. Due to the
initial volumetric representation, many vertices are shared between
the design mesh and the simulation mesh and the simulation results
can be visualized (also volumetrically) directly on the design mesh.
This allows for clear hints on where to adapt/improve the model if
necessary.

Since both the subdivision steps along with the conversion into a
tetrahedral mesh can be expressed as one precomputable matrix-
vector multiplication, our meshing process is much faster than
those of commonly used meshing tools such as CGAL [AJR∗16]
or TetGen [Si15] and therefore allows much faster iterations of de-
sign and simulation. Additionally, due to the volumetric structure
and the choice of the volumetric modeling operations, the mesh is
guaranteed to be manifold (except for self-intersections).

Our main contributions are:

• A new approach for generating 3D models suited for design and
simulation alike.

• A tighter integration of modeling and simulation with shorter
iteration times and more insightful feedback.

These lead to the following benefits:

• Fast and consistent meshing due to an existing volumetric struc-
ture and precomputable mesh generation matrices.

• A partly relation between the geometric model and the simula-
tion results.

• An ensured manifold mesh representation while modeling (ex-
cept for self-intersections).

The paper is structured as follows: Section 2 summarizes exist-
ing work that is related or fundamental to our approach. Section 3
explains the approach in detail, showing its individual components
and their connections. In Section 4, we describe our prototypical
implementation. Section 5 shows the accomplished results, as well
as benchmarks for the major steps and comparison with other al-
gorithms. Section 6 wraps up the paper, reflects on our results and
points out the advantages and possibilities for improvements of our
approach. Finally, Section 7 gives an outlook on future improve-
ments.

2. Related Work

This section overviews existing methods that are related to our ap-
proach and briefly discusses their benefits and drawbacks.

2.1. Modeling

In the field of modeling three-dimensional objects, the main
categories are computer-aided design software (CAD) like
Solid Works [Sys17], Rhino [MA17] or Fusion 360 [Aut17b] and
polygonal modeling known from tools like Maya [Aut17a] or
Blender3D [Fou17].

CAD software in general uses implicit volumetric representa-
tions such as BReps or parametric surface descriptions such as
Bézier, B-spline or NURBS surfaces. The latter define smooth sur-
faces by a set of control points and are well suited for engineering
applications. However, they are hard to use when aiming for or-
ganic shapes such as often required in computer graphics and ani-
mation.

In the area of design for computer graphics, animation and
games, polygonal modeling tools are very common because of
their easy-to-use modeling techniques. In contrast to CAD soft-
ware, polygonal modeling tools like Blender3D offer subdivision
surface algorithms to design organic 3D models. They provide a
control mesh with a relatively low amount of degrees of freedom
to model a smooth limit surface (see Section 2.2). A commercial
example for heavily using subdivision techniques in different areas
of 3D modeling and computer animation is Pixar [Stu17]. Never-
theless, all these tools typically offer surface modeling only.

In terms of volumetric modeling, there are only few approaches.
Fairly new modeling techniques arise with the field of additive
manufacturing, using modeling techniques on a voxel basis. An ex-
ample is the software Monolith [Aut17c] which is a voxel-based
modeling engine for multi-material 3D printing. It can describe in-
ner structures and material properties. Another volumetric model-
ing technique is sculpting [MQW01], which allows the designer to
initially model a rough shape and then define details like a sculp-
tor by adding and removing parts locally from the shape. Analo-
gously to subdivision surfaces, subdivision volumes exist, but they
are mostly used in the context of simulation as described in Sec-
tion 2.2.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

10

C. Altenhofen, F. Schuwirth, A. Stork, D. Fellner / Implicit Mesh Generation using Volumetric Subdivision

2.2. Subdivision

Subdivision surfaces are widely used in computer graphics and
computer animation. They provide smooth surfaces while at the
same time only having a small number of degrees of freedom to
define those. Due to the iterative or precomputable refinement pro-
cess, memory consumption for a subdivision-based 3D object is
much lower than for a finely tessellated model. It also allows for
dynamic tessellation and level-of-detail approaches to improve the
performance for rendering. For many years, different subdivision
schemes have been developed. Some of them require purely trian-
gular control meshes [Loo87,DLG90], while others work on quad-
based meshes or are able to handle control meshes with arbitrary
topology [Doo78, CC78]. Depending on the subdivision scheme
and the topology of the control mesh, the limit surface has different
continuity C (C0, C1, C2).

As an extension to the existing subdivision schemes for surfaces,
volumetric subdivision algorithms have been developed. They are
mostly used in the engineering environment for global or local re-
finement of the simulation mesh [BHU10a]. Similar to subdivision
surfaces, different volumetric subdivision schemes have different
requirements to the (in this case volumetric) control mesh and result
in different levels of continuity for their limit representation. Joy
et. al [JM99] presented a volumetric extension to the Catmull-Clark
surface subdivision scheme. As for the surface version, Catmull-
Clark solids can handle control meshes with arbitrary topology as
long as they are manifold. Chang et. al [CMQ03] as well as Schae-
fer et. al [SHW04] present alternative volumetric subdivision ap-
proaches based on tetrahedral meshes.

Subdivision surfaces as well as subdivision volumes struggle
with so-called irregular vertices. These are vertices with a va-
lence different to the valence intended for the subdivision scheme.
E.g. Catmull-Clark surface subdivision [CC78] works best with
quadrilateral patches and vertices of valence 4. The Butterfly
scheme [DLG90] requires a triangular mesh with vertices of va-
lence 6. Although most schemes define a limit surface/volume for
these vertices, the drawback comes with reduced continuity (e.g.
C0 instead of C1 or even C2 for regular vertices) and/or a more
difficult mathematical evaluation.

In the past years, several subdivision surface schemes have been
improved and extended in order to overcome the problems with
irregular vertices, e.g. [ZSS96,HS10,LFS16] and to even bridge the
gap to spline-based representations [CADS09,RSAF16]. However,
for subdivision volumes, those are still open points.

2.3. Meshing and Simulation

In terms of simulation techniques and especially in the domain of
structural mechanics, the finite element method (FEM) [ZTT77]
is widely used. As the FEM has evolved in the engineering field,
adapted and specialized approaches have been developed for com-
puter animation and video games for creating physically-based an-
imations [MDM∗02, MS06, NMK∗06]. The basic idea is to divide
the simulation domain into a set of discrete elements, to solve
the physical problem for each element and then combine the lo-
cal solutions to solve the global problem. In 3D, typical finite

elements are tetrahedra or hexahedra. Every element has its de-
grees of freedom and its basis functions that are used to solve the
partial differential equations. Over the years, several approaches
have been presented to improve the method e.g. by adding a co-
rotational term [HS04] or by introducing higher order basis func-
tions [WKS∗11, WMRA∗15].

FEM approaches of any kind share the same requirement when
simulating objects that are only represented by a surface model:
mesh generation. Mesh generation or meshing describes the pro-
cess of converting a (manifold) surface mesh into a volumetric
mesh for simulation.

Different approaches exist on how to convert a surface
representation into a fully volumetric, most often tetrahedral
mesh [AJR∗16,Si15,ACSYD05]. As most of them are designed for
engineering applications, mesh quality is a very important require-
ment for the mesh generation process. [She02] as well as [Fie00]
give good overviews over the different factors of mesh quality and
how they can be satisfied.

Iso-geometric analysis IGA tries to avoid the problems of mesh
generation in the engineering domain by using tri-variate spline
representations for both design and simulation [HCB05]. How-
ever, these tri-variate spline meshes are not generated automat-
ically and have also to be created from surface models in the
first place. This implies also to use the spline basis functions
for solving the partial differential equations. As an alternative to
splines/NURBS, some approaches exist that work on subdivision
surfaces [GCSO99, CSA∗02, WHP11] and even subdivision vol-
umes [BHU10b]. Due to the spline or subdivision basis functions,
IGA-based methods need a specialized solver to run the simulation
and have thereby only limited compatibility with common systems.

As an alternative to FEM, mass-spring systems are widely used
in computer animation for cloth and hair animation but also for
deformation [P∗95, LBOK13]. To generate visually plausible ani-
mation high computation power is still needed.

Another physically-based animation approach can be found in
the area of position based dynamics [MHHR07]. The basic idea
is to use independent particles and simulate their behavior based
on the properties of the neighborhood of each particle. A good
overview can be found in [BMO∗14].

Both methods can provide plausible results while having lower
requirements to model quality than FEM. However to achieve vi-
sually appealing animations, proper constraints for the particles or
springs have to be found manually for every use case.

The approach presented in this paper combines the well-known
design properties of subdivision surfaces with a simplified and ef-
ficient mesh generation process for physically-based FEM simula-
tions. Utilizing the volumetric Catmull-Clark subdivision scheme,
it is possible to use the volumetric representation directly for both,
modeling and simulation. Our volumetric modeling operations al-
low for versatile mesh generation and manipulation. Therefore, no
additional step is needed to generate a simulation mesh. This cre-
ates a tighter integration between design and simulation.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

11

C. Altenhofen, F. Schuwirth, A. Stork, D. Fellner / Implicit Mesh Generation using Volumetric Subdivision

3. Concept

In this section, we present our approach for integrated modeling
and simulation using implicit mesh generation from volumetric
subdivision.

3.1. Volumetric Modeling

Common tools for polygonal modeling used in design and com-
puter animation only support surface modeling. Although closed
surface meshes implicitly describe a volumetric object, they are not
considered as volumetric meshes. In addition to vertices, edges and
faces, a volumetric mesh consists of cells and has inner faces to
separate these cells. A closed surface mesh could however be con-
sidered as a volumetric mesh consisting of just one polyhedral cell.

We present a modeling approach for fully volumetric meshes.
Therefore, we developed a set of volumetric modeling opera-
tions similar to the ones found in the polynomial modeling func-
tionality offered by common tools like Blender3D [Fou17] and
Maya [Aut17a]. To form the geometry/the shape of the 3D object,
one or multiple vertices, edges, faces or cells can be translated, ro-
tated and scaled. To edit the topology of the object, new cells can
be added to any outer face. To add more detail, additional vertices
can be inserted into edges, faces or cells, splitting these into two
or more edges/faces/cells. Alternatively, the entire mesh can be re-
fined. During all these operations, the internal volumetric structure
of the mesh is maintained. As the modeling operations are not re-
stricted to the outer vertices/edges/faces of the model, the inner
structures can be modified as well. Our system allows for exam-
ple to shape the borders of inner cells or to e.g. encode material
parameters on internal vertices for animation. Figure 2 shows an
example modeling process from the initial geometry to a complete
3D model using our volumetric modeling approach.

3.1.1. Volumetric Catmull-Clark Subdivision

In order to keep the number of degrees of freedom low for model-
ing, we use a coarse control mesh to define the 3D object and ap-
ply a subdivision algorithm to create the actual model. This gives
high control over the shape of the object while at the same time cre-
ates visually appealing surfaces. For our approach, we use Catmull-
Clark subdivision since it is not restricted to a special kind of con-
trol mesh (e.g. triangular or quad-based). As we work with a vol-
umetric mesh instead of a surface mesh, we apply the volumetric
Catmull-Clark subdivision rules.

These can be summarized as follows:

1. For every cell, add a cell point at its centroid.
2. For every face, add a face point at the weighted average of its

centroid and the centroids of all adjacent cells.
3. For every edge, add an edge point at the weighted average of its

midpoint and the centroids of all adjacent cells and faces.
4. Move every original vertex to its new location at the weighted

average of its original location and the centroids of all adjacent
cells, faces and edges.

5. Connect each cell point with its corresponding face points and
every face point with its corresponding edge points to create
new edges, faces and cells.

(a) The initial hexahedral control
mesh and its smooth limit when
starting the modeling process.

(b) The control mesh and its limit
after adding new cells and trans-
forming some vertices and faces.

(c) The final tree model with a
subdivided control mesh and sev-
eral details.

(d) The volumetric inner struc-
tures of the tree model after two
steps of subdivision.

Figure 2: Creation of a 3D model with our volumetric modeling
application. (a) to (c) show the progress from the initial hexahe-
dral control mesh to the final design. (d) shows the volumetric in-
ner structures for our implicit mesh generation approach that are
maintained during the entire modeling process.

A detailed description on the subdivision rules can be found
in [JM99] and [BHU10b]. For elements on the outer surface,
the subdivision rules for Catmull-Clark Surfaces apply. As for
Catmull-Clark surfaces, sharp edges and features can be defined
as well. Internally, we use a volumetric half-face data structure to
efficiently calculate the adjacencies of cells, faces, edges and ver-
tices needed for the subdivision process (see Section 4.1 for more
details). An example of three subdivision steps applied on a hex-
ahedral control mesh as well as its smooth limit can be seen in
Figure 3.

3.1.2. Ensuring consistent Topology

Using our consistent modeling operations, the resulting volumet-
ric subdivision meshes are manifold by design. There is no way to
break them except for self-intersection. In general, these meshes
have the following topological properties:

1. Every face on the boundary is connected to one cell.
2. Every face inside the mesh is connected to two neighboring

cells.
3. Every edge connects two vertices and is shared by at least two

faces.

However, self-intersection is a major problem. Allowing the user
to arbitrarily manipulate the geometry of the object might lead to
situations, where vertices are moved in a way that faces intersect

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

12

C. Altenhofen, F. Schuwirth, A. Stork, D. Fellner / Implicit Mesh Generation using Volumetric Subdivision

(a) The original control mesh (b) One level of subdivision (c) Two levels of subdivision (d) Three levels of subdivision (e) The evaluated limit

Figure 3: Iterative subdivision with volumetric Catmull-Clark subdivision rules on a hexahedral control mesh. (a) shows the control mesh.
(b) to (d) show the result of the subdivision process. (e) shows its smooth limit. Please note that in addition to the boundary faces, the
volumetric cells and the inner faces are subdivided accordingly.

other faces of the mesh. As this might happen with a surface mesh
as well, it is much more likely to happen for volumetric meshes due
to their interior structure. If inner vertices are not moved accord-
ingly when manipulating the outer surface, they will at some point
intersect with the mesh boundary while the user keeps modeling.
For approximating subdivision schemes such as the Catmull-Clark
surfaces and solids, self-intersections of the control mesh do not
necessarily lead to self-intersections of the subdivided mesh, but
they can be used as an approximation as it is a necessary but not suf-
ficient criterion. For simplicity reasons, we avoid self-intersections
of our volumetric representation by denying self-intersections for
the control mesh. Section 7 shows an idea on how to handle this
problem more accurately.

3.2. Meshing

To prepare the model for simulation, the volumetric control mesh
gets subdivided a certain amount of times until the desired mesh
resolution is reached. For an approximating but fast simulation, one
or two subdivision steps might be enough, whereas for a very pre-
cise simulation, three or more steps could be needed. The subdi-
vision is performed by using the volumetric Catmull-Clark subdi-
vision rules as explained in Section 3.1.1. One step of subdivision
from level k−1 to level k can be expressed as a matrix-vector mul-
tiplication of the control points pk−1 of level k− 1 and the corre-
sponding subdivision matrix Sk (see Equation 1).

pk = Sk ∗ pk−1 (1)

The subdivision matrix Sk contains the factors needed to calculate
pk from pk−1, according to the given subdivision rules. As one step
of volumetric Catmull-Clark subdivision creates one additional ver-
tex per edge, face and cell of the control mesh, the number of new
vertices |pk| equals the number of vertices |pk−1| plus the number
of edges |ek−1|, faces | fk−1| and cells |ck−1| of the previous level.
Therefore Sk is of size |pk|× |pk−1|. Subsequent subdivision steps
can be performed by either using the resulting control points of the
previous level or by chaining the subdivision matrices together as
shown in Equation 2.

pk+1 = Sk+1 ∗ pk

= Sk+1 ∗Sk ∗ pk−1 (2)

This matrix representation of the subdivision rules allows comput-
ing a new combined subdivision matrix Ŝn that directly calculates
the subdivided mesh of level n from the original control points p0
(see Equation 3).

pn = Ŝn ∗ p0 (3)

Ŝn is thereby the product of the subdivision matrices Sk of all sub-
division levels k from 1 to n (see Equation 4).

Ŝn =
n

∏
k=1

Sk (4)

If the simulation environment can deal with hexahedral meshes,
the volumetric Catmull-Clark mesh can be used directly as a finite
element mesh for the simulation. If a tetrahedral mesh is required,
it can be easily generated from the volumetric subdivision mesh in
the following way:

1. Insert a point at the center of each face
2. Insert a point at the center of each cell
3. Connect the original vertices of each face with the new center

point of the face
4. Connect all vertices (including the faces center points) with the

new point at the center of the cell

The result can be seen in Figure 4. This will split every hexahe-
dral cell into 24 tetrahedral cells, sharing eight vertices with the
original model. Other methods to split a hexahedron into tetrahedra
exist [MT03,Lab17] that create a different amount of cells per hex-
ahedron, but the one chosen here provides a very symmetric and
unbiased mesh, although it creates a large amount of elements.

The conversion process to create the vertices of the tetrahedral
mesh tn can also be represented as a matrix-vector multiplication
using the subdivided control vertices pn of level n and the so called
tet generation matrix Tn as shown in Equation 5. The vertices tn can
also be expressed in dependence of the original control points p0
and the subdivision matrix Ŝn.

tn = Tn ∗ pn

= Tn ∗ Ŝn ∗ p0 (5)

Given by the tetrahedralization approach, the number of vertices
of the tetrahedral mesh |tn| equals to the number of vertices |pn|

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

13

C. Altenhofen, F. Schuwirth, A. Stork, D. Fellner / Implicit Mesh Generation using Volumetric Subdivision

(a) Original hexahedral control
mesh

(b) Hexahedron converted into 24
tetrahedra

(c) Hexahedral control mesh with
two levels of subdivision

(d) Tetrahedral mesh generated
from the subdivided hexahedron

Figure 4: Exemplary meshing process. One hexahedron (a) is be-
ing meshed into 24 tetrahedra (b). The same hexahedron has been
subdivided twice (c) and then converted into a tetrahedral mesh (d).

plus the number of faces | fn| and cells |cn| of the subdivided mesh.
Therefore, Tn is of size |tn|× |pn|.

Creating the simulation mesh in this fashion provides a very fast
meshing process that allows for high feedback rates. When only
changing the geometry of the original model (i.e. changing posi-
tions of the control points p0), the matrices Ŝn and Tn remain un-
changed and can be re-used. This allows to precompute these ma-
trices and even their product Tn ∗ Ŝn for a given subdivision level
n, resulting in even faster mesh generation. However, changing the
topology of the model by adding or removing vertices, edges, faces
or cells or changing the subdivision level leads to a re-computation
of Ŝn and Tn. Section 5.2 provides some timings on creating the ma-
trices Ŝn and Tn for multiple subdivision levels as well as applying
them to the control mesh to create the simulation mesh.

3.3. Simulation and Feedback

As described in Section 1, we run the simulation with a custom
GPU-based FEM solver to further increase the integration between
modeling and simulation. However, any other FEM solver could be
used that accepts either a hexahedral or a tetrahedral mesh for its
simulations. With our implicit meshing approach, the relation be-
tween the geometric model and the simulation model can be kept
to some extent, making it easier to provide feedback of the simu-
lation results for modeling. When converting every subdivided cell
into 24 tetrahedra as shown in Figure 4, the vertices of the cell are
shared with the tetrahedra. This keeps partial correspondence be-
tween the original subdivision mesh and the tetrahedral mesh and

allows for a volumetric visualization of the simulation result di-
rectly on the subdivision model.

4. Implementation

In this section, we describe our prototypical system, which consists
of the following components:

1. A 3D modeling environment based on Catmull-Clark subdivi-
sion solids

2. A GPU-based finite element solver for Computational Structural
Mechanics (CSM)

4.1. Modeling Application

For designing 3D objects, we use our prototypical modeling appli-
cation implemented in C++. It allows object generation and manip-
ulation in the concept of polygonal modeling, similar to Blender3D
or Maya while also maintaining the volumetric representation dur-
ing modeling. We implemented a set of volumetric modeling op-
erations to shape the subdivision control mesh. These operations
include the transformation (translation, rotation and scale) of sin-
gle or multiple cells, faces, edges and vertices as well as the abil-
ity to add new cells to the mesh. To create loops or holes, it is
also possible to connect two boundary faces with one another by
either inserting a new cell between them or by merging them di-
rectly. Analogously to Catmull-Clark subdivision surfaces, sharp
features can be created by defining crease edges on the volumet-
ric control mesh. The control mesh can be refined or subdivided
(with and without smoothing) iteratively to increase the mesh reso-
lution and to add details on lower levels. For the internal storage
of the Catmull-Clark subdivision solids, we use a pointer-based
half-face data structure. It can be seen as an extension to a half-
edge data structure, by representing faces as a pair of two half-
faces and adding additional entities to represent cells. As usually
for half-edges, every half-face holds a reference to its opposing
half-face and to the next half-face inside the same cell. Iterating
over these references in different ways, allows for fast computa-
tion of all relevant neighboring relations needed for our modeling
operations as well as for the subdivision process. When modifying
the mesh topology by inserting or deleting elements, the references
only have to updated locally; unaffected parts of the mesh remain
unchanged. However, storing all this information results in a very
high memory footprint, especially for complex models.

For interaction with the CSM solver, the subdivision matrix and
the tet generation matrix are applied to the control mesh as de-
scribed in Section 3.2. The simulation results can be visualized di-
rectly on the subdivision mesh using the partial correlation between
itself and the tetrahedral mesh. The stress is shown color-coded on
the respective vertices. Although this is just an approximation, it
helps to identify the weak points of the 3D object and to improve
the design as described in Section 3.3.

4.2. CSM Solver

As a fluent workflow is essential for a good integration, we use
a custom GPU-based finite element solver based on [WBS∗13] to

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

14

C. Altenhofen, F. Schuwirth, A. Stork, D. Fellner / Implicit Mesh Generation using Volumetric Subdivision

simulate the physical behavior of our 3D object. The solver is writ-
ten in C++ using NVIDIA CUDA for performing GPU computa-
tions. It requires a purely tetrahedral mesh as input, but is therefore
able to run the simulation with either standard or corotational finite
elements with linear or higher order basis functions [WMRA∗15].
The simulation itself can be run as either a static or a dynamic sim-
ulation. While static simulations try to find an equilibrium between
internal elastic forces and external forces (boundary conditions),
dynamic simulations are time dependent and can deal with dynam-
ically changing boundary conditions as well. To control the simu-
lation parameters, material parameters can be defined in terms of
Young’s modulus and Poisson’s ratio per object or on tetrahedral
level. Boundary conditions such as fixation and external forces can
be defined per vertex. As its output, the application provides the
deformation and the computed stress for each vertex of the sim-
ulation mesh. Instead of feeding the results back to the modeling
application and visualizing them on the subdivision mesh, they can
also be visualized directly on the tetrahedral mesh inside the solver
application. Displacement is shown geometrically on the vertices
whereas the stress is visualized using an interactive color map. The
dynamic simulation additionally shows the full animation of the
object.

5. Results

In this section, we present the results produced with our method.
We show performance measurements for the implicit tetrahedral
mesh generation of several volumetric models compared to the gen-
eration of a tetrahedral mesh with CGAL, using only the surface
model.

5.1. Hardware Setup

The measurements presented here were taken on a Windows 10
desktop PC with an Intel Core i7-3770 CPU with a clock rate of
3.4 GHz and 16 Gigabytes of DDR3 1600 system memory.

5.2. The meshing process

We used single-threaded CPU implementations written in C++
to evaluate both our meshing approach as well as the tetrahedral
meshing provided by CGAL. Our test set consists of grid-based
procedurally generated models in sizes from one to 40× 40× 1
subdivision cells (see Figure 5).

To evaluate our approach, we subdivide every model two times
and measure the computation time to generate the subdivision ma-
trices S1 and S2, as well as the combined matrix Ŝ2 and the tet
generation matrix T2. Figure 6 shows the results of these measure-
ments. Generating the matrices Sn and Tn is a process with linear
complexity in the size of the control mesh (and therefore indirectly
also in the number of vertices of the resulting tetrahedral mesh).
This can be directly derived from the subdivision rules as they are
also defined linearly for all cells, faces, edges and vertices of the
control mesh. However, the time for calculating the combined sub-
division matrix Ŝn depends on the subdivision level n since all ma-
trices Sk for k ≤ n have to be multiplied (see Equation 4). Addi-
tionally, we measure the time to apply the matrices Ŝ2 and T2 to

(a) Procedurally generated subdivi-
sion volume with 10×10×1 cells.

(b) Procedurally generated subdivi-
sion volume with 20×20×1 cells.

Figure 5: Procedurally generated volumetric subdivision models of
various sizes for performance testing. The surfaces are created with
different numbers of cells by evaluating the function z = sin(x) ∗
sin(y).

the control mesh of each model. As can be seen in Figure 7 mul-
tiplication times also grow linearly in the number of vertices. This
is also expected, since the computations are linear matrix-vector
multiplications Ŝn ∗ p0 and Tn ∗ pn (see Equation 5). Nevertheless,
the connectivity of the control mesh defines the sparsity of Ŝn and
Tn and therefore has an effect on the complexity of the multipli-
cations. For the evaluation of CGAL, we use a target cell size of
0.0625 in order create approximately as many tetrahedral elements
as with our approach for subdivision level n = 2. As shown in Fig-
ure 8, tetrahedral meshing in CGAL is also a process with linear
complexity for fixed parameters.

To further analyze the impact of the subdivision level on the
computation times of our implicit meshing approach, we started
with a simple cube and subdivided it iteratively up to six times.
Table 1 shows the computational time for generating the matrices
Sn, Ŝn and Tn. Keep in mind that the matrices have only to be re-
generated if the topology of the design mesh has changed. Table 2
shows the computational time for applying the matrices Ŝn and Tn
in order to subdivide and convert the model into a tetrahedral mesh
of a specific resolution. Again, matrix generation as well as matrix
multiplication show a linear complexity in the number of resulting
vertices. The growth in relation to the subdivision level n is expo-
nential, however. This is expected, since the number of resulting
vertices is also exponentially related to the subdivision level. For
comparison, Table 2 also shows the time needed to create a com-
parable tetrahedral mesh using CGAL. We chose the cell size c in
a way to approximately generate a similar number of vertices than
for the tetrahedral mesh created with our method.

5.2.1. Mesh Quality

Mesh quality is an important factor when it comes to simulation. As
a general rule, mesh quality can be derived from the uniformity of
the mesh elements [She02]. This means that all mesh elements (all
tetrahedra/hexahdra) should have approximately the same size and
a preferably uniform aspect ratio. The mesh generation of CGAL
attempts to create optimized tetrahedral meshes in order to meet
these quality requirements as good as possible. In contrast, our ap-
proach relies directly on the volumetric subdivision control mesh
that is used to design the 3D object. Larger patches on the control
mesh will result in larger simulation elements and smaller patches
will result in smaller ones. The same applies to the aspect ratio

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

15

C. Altenhofen, F. Schuwirth, A. Stork, D. Fellner / Implicit Mesh Generation using Volumetric Subdivision

Time [ms]
Subdivision Level n Control Vertices Res. Vertices Generation of Sn Generation of Ŝn Generation of Tn

0 8 15 - - 0
1 27 71 1 1 1
2 125 429 1 2 1
3 729 2969 3 4 2
4 4913 22065 27 31 20
5 35937 170081 347 397 184
6 274625 1335489 3089 3610 1665

Table 1: Timings for generating the partial subdivision matrix Sn, the combined subdivision matrix Ŝn and the tet generation matrix Tn for
an increasing subdivision level n. As n = 0 corresponds to the original control mesh, subdivision is not necessary and only the tet generation
matrix Tn has to be computed.

Our Method CGAL Meshing
Time [ms] Time [ms]

n Res. Vertices Subdivision Tet-Conversion Complete Meshing Comparable c Res. Vertices CGAL Meshing
0 15 - 0 0 0.6 14 6
1 71 1 0 1 0.25 75 16
2 429 1 1 2 0.135 431 81
3 2969 2 1 3 0.0665 2935 452
4 22065 2 4 6 0.0328 22092 3742
5 170081 8 7 15 0.0163 170363 34144
6 1335489 26 22 48 0.0081 1348846 303994

Table 2: Timings for subdividing the original control mesh (Ŝn ∗ p0) and converting it into a tetrahedral mesh (T̂n ∗ pn) compared to the
tetrahedral meshing provided by the CGAL library. We choose dedicated cell sizes c for CGAL in order to approximately create the same
number of vertices as we do with our approach for subdivision level n. As for Table 1, the subdivision step is not needed for n = 0.

0 1 2 3 4 5 6
·105

0

0.5

1

1.5

Number of Vertices

Ti
m

e
(s

)

Generation of S1
Generation of S2

Generation of Ŝ2
Generation of T2

Figure 6: Matrix generation of the first level subdivision matrix
S1, the second level matrix S2, the combined subdivision matrix Ŝ2
and the tet generation matrix T2 for procedurally generated models
of different sizes. The x axis shows the number of vertices of the
resulting tetrahedral mesh.

0 1 2 3 4 5 6
·105

0

10

20

30

40

50

60

70

Number of Vertices

Ti
m

e
(m

s)

Multiplication with Ŝ2
Multiplication of T2
Total Multiplication Time

Figure 7: Matrix multiplication of the original control points p0
with the combined subdivision matrix Ŝ2, the tet generation matrix
T2 and the complete mesh generation matrix T2 ∗ Ŝ2. The x axis
shows the number of vertices of the resulting tetrahedral mesh.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

16

C. Altenhofen, F. Schuwirth, A. Stork, D. Fellner / Implicit Mesh Generation using Volumetric Subdivision

0 1 2 3 4 5 6
·105

0

50

100

150

200

Number of Vertices

Ti
m

e
(s

)

Tetrahedral Meshing with CGAL

Figure 8: Mesh generation times of CGAL. The tetrahedral meshes
are generated from the outer surfaces of the same models used in
Figure 6 and Figure 7. The x axis shows the number of vertices of
the resulting tetrahedral mesh.

of the elements. However, given by the subdivision scheme, these
deficits get smaller with each level of subdivision. Additionally for
computer animation, visually plausible results are often sufficient
and fully detailed, physical simulations are not required. Unfortu-
nately, having ill-shaped elements in the mesh might also lead to
unstable simulations. Too large deviations in angles or aspect ra-
tios of the elements might endanger the overall convergence of the
simulation.

In order to analyze the mesh quality of our tetrahedral meshes
compared to the ones created with CGAL, we calculated a set of
quality indicators such as the volume, circumradius and connec-
tivity of the mesh elements. The results are shown in Table 3. In
general, CGAL creates tetrahedral meshes with much more uni-
form elements. This can be seen especially when comparing the
min-max ratio for the circumradius. As this effect is not that big on
the sine surface meshes due to their uniform procedural generation,
it becomes much more visible when analyzing manually created
free-form models such as the coyote or the tree model. However,
our approach creates meshes with much more homogeneous con-
nectivity. Even if the minimum and maximum number of adjacent
vertices is similar for both approaches, the median is much closer
to the minimum value compared to CGAL. This also leads to a
sparsification of the matrices and a speed-up in simulation time.

To improve the mesh quality and obtain a more homogeneous
simulation mesh, local refinement or smoothing could be used as
described in Section 7.

5.3. Result visualization

As described in Section 3.3, the design mesh and the simulation
mesh partially share their vertices. On the one hand, this leads to

a geometrical and visual correspondence between the subdivision
mesh and the tetrahedral mesh, while on the other hand it allows for
visualization of the simulation results (e.g. the absolute stress) not
only on the tetrahedral mesh, but on the subdivided design mesh
as well. Figures 1 and 9 show two examples of how our complete
system can be used, including all stages of modeling, implicit tetra-
hedral meshing, simulation and result visualization.

6. Conclusion

In this paper, we present a novel approach to strengthen the in-
tegration of design and simulation. By using a volumetric repre-
sentation based on Catmull-Clark subdivision solids, we decrease
the complexity of the meshing process and thereby the iteration
times for simulation-based design. For designing the 3D model,
volumetric modeling operations have been developed to keep the
volumetric representation consistent and to preserve the internal
structures. The simulation mesh is obtained by applying the vol-
umetric subdivision scheme onto the model several times and if
necessary converting the result into a purely tetrahedral mesh. This
approach creates a partial correspondence between the design mesh
and the simulation mesh that allows feedback from simulation re-
sults to be incorporated directly into the design. Additionally, the
subdivision itself as well as the generation of the tetrahedral mesh
can be expressed as matrix-vector multiplications. If the topology
of the design mesh is unchanged and only the geometry is modified,
the matrices can be precomputed to further speed up the mesh gen-
eration process. For changing topology, we achieve a speed-up of
up to 70 compared to creating the tetrahedral mesh from the outer
surface using CGAL. When only modifying the geometry of the
design mesh, we even achieve a speed-up of up to 2800, reducing
the re-meshing time to e.g. 55 milliseconds for a tetrahedral mesh
of 500.000 vertices. However, the quality of our simulation meshes
depends directly on the configuration of the control mesh and there-
fore might be worse than the meshes generated with CGAL. Fur-
thermore, self-intersections might occur if the inner vertices are not
adapted according to changes on the outer surface.

Our approach offers consistent volumetric modeling, fast mesh-
ing and tight correlation between the design and the simulation
mesh, while at the same time keeping compatibility with standard
FEM solvers for simulation.

7. Future Work

The presented volumetric subdivision approach only creates man-
ifold and watertight meshes by design, as long as no self-
intersections occur. This holds especially for the inner structures
of the volumetric mesh. To avoid modifying the inner structures
manually, an adapted version of Laplacian smoothing or a mass-
spring approach could provide an automatic adjustment to the inner
control points while the designer works on the outer surface as he
would in common modeling tools.

With our presented approach, mesh quality depends on the uni-
formity of the control mesh. Local refinement of badly shaped
elements could help to increase the overall mesh quality and to
better resolve high-frequency physical effects in specific areas of
the mesh. For quad-based subdivision schemes like Catmull-Clark,

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

17

C. Altenhofen, F. Schuwirth, A. Stork, D. Fellner / Implicit Mesh Generation using Volumetric Subdivision

Model Method
Tet Volume Circumradius Adjacent Vertices

min max ratio min max ratio min max median
Sine Surface Ours 0.0001096 0.0005208 4.751824818 0.0654446 0.585578 8.947690107 5 26 6
5×5×1 CGAL 0.0000720 0.0009538 13.24722222 0.0674559 0.130755 1.938377518 3 20 11
Sine Surface Ours 0.0001563 0.0007213 4.61484325 0.0718737 0.560796 7.802520254 5 26 6
20×20×1 CGAL 0.0004904 0.0010268 2.093800979 0.0605184 0.152669 2.522687315 3 23 11

Tree
Ours 0.0000493 0.0206962 419.801217 0.0597049 3.924601 65.73331502 4 31 6
CGAL 0.0000615 0.0071105 115.6178862 0.0517199 0.270421 5.228567727 3 24 9

Coyote
Ours 0.0004643 0.0112495 24.2289468 0.1169941 2.656621 22.70730746 5 34 6
CGAL 0.0000923 0.0080642 87.36944745 0.0576763 0.277445 4.810381387 3 25 11

Table 3: Different indicators for mesh quality calculated for tetrahedral meshes generated with our approach compared to CGAL. We
calculated the volume of each tetrahedron as well as the radius of its circumsphere. The table shows the minimum, maximum and the ratio
between minimum and maximum for these values. Additionally, we analyzed the connectivity of every vertex to its neighboring vertices,
showing the minimum, maximum and median value for each mesh. Subdivision levels and CGAL cell sizes for the selected models were
chosen in a way that the number of vertices of the tetrahedral meshes match as good as possible.

(a) The coyote model created with our
volumetric subdivision modeling ap-
plication.

(b) The tetrahedral mesh of the coy-
ote model generated with our implicit
meshing approach.

(c) Dynamic CSM simulation of the
coyote model under gravity. The ab-
solute stress is color coded.

(d) Applying external forces to the
model by creating a dynamic bound-
ary condition on one of its legs.

Figure 9: Another example showing our approach. The coyote model is being designed with Catmull-Clark subdivision solids (a), subdivided
twice and converted into a tetrahedral mesh with our implicit meshing approach (b) and simulated under gravity with the dynamic FEM solver
(c). The dynamic simulation allows for defining dynamic boundary conditions during the simulation (d).

local refinement is not possible without introducing T-junctions.
Therefore, tetrahedral subdivision schemes such as [BHU10a]
would be better suited. Extending our approach with such a scheme
would allow local refinements and improve the quality of the simu-
lation results without increasing the number of degrees of freedom
as much as with global subdivision. As an alternative, a similar ap-
proach as for the inner control points could be envisaged to increase
mesh uniformity. However, to not change the design, movement of
the outer control points should to be constrained in a way that the
outer limit surface of the mesh stays the same.

To further integrate modeling and simulation, modeling of phys-
ical properties is envisaged. Defining additional attributes such as
Young’s modulus or Poisson’s ratio at the control points would
enable different material distributions across the mesh and create
smooth gradients in material transitions when subdividing. Crease
edges and sharp features could be used to also model discrete ma-
terial boundaries. This way, the stiffness and physical behavior of
different parts of the model could be easily defined and modified.

Acknowledgements

This work was supported by the EU-project CAxMan (project num-
ber 680448) which is co-funded by the Horizon 2020 Framework
Program H2020-FoF-2015 of the European Union. More informa-
tion can be found at https://www.caxman.eu/.

References

[ACSYD05] ALLIEZ P., COHEN-STEINER D., YVINEC M., DESBRUN
M.: Variational tetrahedral meshing. In ACM Transactions on Graphics
(TOG) (2005), vol. 24, ACM, pp. 617–625. 3

[AJR∗16] ALLIEZ P., JAMIN C., RINEAU L., TAYEB S., TOURNOIS J.,
YVINEC M.: 3D mesh generation. In CGAL User and Reference Man-
ual, 4.9 ed. CGAL Editorial Board, 2016. URL: http://doc.cgal.
org/4.9/Manual/packages.html#PkgMesh_3Summary. 2,
3

[Aut17a] AUTODESK: Autodesk maya, jan 2017. URL: http://www.
autodesk.de/products/maya/overview. 2, 4

[Aut17b] AUTODESK: Fusion360, jan 2017. URL: https://www.
rhino3d.com/. 2

[Aut17c] AUTODESK: monolith, jan 2017. URL: http://www.
monolith.zone/. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

18

http://doc.cgal.org/4.9/Manual/packages.html#PkgMesh_3Summary
http://doc.cgal.org/4.9/Manual/packages.html#PkgMesh_3Summary
http://www.autodesk.de/products/maya/overview
http://www.autodesk.de/products/maya/overview
https://www.rhino3d.com/
https://www.rhino3d.com/
http://www.monolith.zone/
http://www.monolith.zone/

C. Altenhofen, F. Schuwirth, A. Stork, D. Fellner / Implicit Mesh Generation using Volumetric Subdivision

[BHU10a] BURKHART D., HAMANN B., UMLAUF G.: Adaptive and
feature-preserving subdivision for high-quality tetrahedral meshes. In
Computer Graphics Forum (2010), vol. 29, Wiley Online Library,
pp. 117–127. 3, 10

[BHU10b] BURKHART D., HAMANN B., UMLAUF G.: Iso-geometric
finite element analysis based on catmull-clark: Subdivision solids. In
Computer Graphics Forum (2010), vol. 29, Wiley Online Library,
pp. 1575–1584. 3, 4

[BMO∗14] BENDER J., MÜLLER M., OTADUY M. A., TESCHNER M.,
MACKLIN M.: A survey on position-based simulation methods in com-
puter graphics. In Computer graphics forum (2014), vol. 33, Wiley On-
line Library, pp. 228–251. 3

[CADS09] CASHMAN T. J., AUGSDÖRFER U. H., DODGSON N. A.,
SABIN M. A.: Nurbs with extraordinary points: high-degree, non-
uniform, rational subdivision schemes. In ACM Transactions on Graph-
ics (TOG) (2009), vol. 28, ACM, p. 46. 3

[CC78] CATMULL E., CLARK J.: Recursively generated b-spline sur-
faces on arbitrary topological meshes. Computer-aided design 10, 6
(1978), 350–355. 2, 3

[CMQ03] CHANG Y.-S., MCDONNELL K. T., QIN H.: An interpolatory
subdivision for volumetric models over simplicial complexes. In Shape
Modeling International, 2003 (2003), IEEE, pp. 143–152. 3

[CSA∗02] CIRAK F., SCOTT M. J., ANTONSSON E. K., ORTIZ M.,
SCHRÖDER P.: Integrated modeling, finite-element analysis, and en-
gineering design for thin-shell structures using subdivision. Computer-
Aided Design 34, 2 (2002), 137–148. 3

[DLG90] DYN N., LEVINE D., GREGORY J. A.: A butterfly subdivision
scheme for surface interpolation with tension control. ACM transactions
on Graphics (TOG) 9, 2 (1990), 160–169. 3

[Doo78] DOO D.: A subdivision algorithm for smoothing down irregu-
larly shaped polyhedrons. In Proceedings on Interactive Techniques in
Computer Aided Design (1978), vol. 157, Bologna, p. 165. 3

[Fie00] FIELD D. A.: Qualitative measures for initial meshes. Inter-
national Journal for Numerical Methods in Engineering 47, 4 (2000),
887–906. 3

[Fou17] FOUNDATION B.: Blender, jan 2017. URL: https://www.
blender.org/. 2, 4

[GCSO99] GRINSPUN E., CIRAK F., SCHRÖDER P., ORTIZ M.: Non-
Linear Mechanics and Collisions for Subdivision Surfaces. Tech. rep.,
1999. 3

[HCB05] HUGHES T. J., COTTRELL J. A., BAZILEVS Y.: Isogeometric
analysis: Cad, finite elements, nurbs, exact geometry and mesh refine-
ment. Computer methods in applied mechanics and engineering 194, 39
(2005), 4135–4195. 2, 3

[HS04] HAUTH M., STRASSER W.: Corotational simulation of de-
formable solids. 3

[HS10] HUANG J., SCHRÖDER P.: \ sqrt {3}-based 1-form subdivision.
In International Conference on Curves and Surfaces (2010), Springer,
pp. 351–368. 3

[JM99] JOY K. I., MACCRACKEN R.: The refinement rules for Catmull-
Clark solids. Tech. rep., Citeseer, 1999. 2, 3, 4

[Lab17] LABORATORIES S. N.: Htet - cubit 15.2 user documenta-
tion, jan 2017. URL: https://cubit.sandia.gov/public/
15.2/help_manual/WebHelp/cubithelp.htm#mesh_
generation/meshing_schemes/conversion/htet.htm. 5

[LBOK13] LIU T., BARGTEIL A. W., O’BRIEN J. F., KAVAN L.: Fast
simulation of mass-spring systems. ACM Transactions on Graphics
(TOG) 32, 6 (2013), 214. 3

[LFS16] LI X., FINNIGAN G. T., SEDERBERG T. W.: G1 non-uniform
catmull-clark surfaces. ACM Trans. Graph. 35, 4 (July 2016), 135:1–
135:8. 3

[Loo87] LOOP C.: Smooth subdivision surfaces based on triangles. 3

[MA17] MCNEEL R., ASSOCIATES: Rhino, jan 2017. URL: https:
//www.rhino3d.com/. 2

[MDM∗02] MÜLLER M., DORSEY J., MCMILLAN L., JAGNOW R.,
CUTLER B.: Stable real-time deformations. In Proceedings of the
2002 ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion (2002), ACM, pp. 49–54. 3

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M., RATCLIFF
J.: Position based dynamics. Journal of Visual Communication and
Image Representation 18, 2 (2007), 109–118. 3

[MQW01] MCDONNELL K. T., QIN H., WLODARCZYK R. A.: Virtual
clay: A real-time sculpting system with haptic toolkits. In Proceedings of
the 2001 Symposium on Interactive 3D Graphics (New York, NY, USA,
2001), I3D ’01, ACM, pp. 179–190. 2

[MS06] MEZGER J., STRASSER W.: Interactive soft object simulation
with quadratic finite elements. In International Conference on Articu-
lated Motion and Deformable Objects (2006), Springer, pp. 434–443. 3

[MT03] MUELLER M., TESCHNER M.: Volumetric meshes for real-time
medical simulations. In Bildverarbeitung für die Medizin 2003. Springer,
2003, pp. 279–283. 5

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN E.,
CARLSON M.: Physically based deformable models in computer graph-
ics. In Computer graphics forum (2006), vol. 25, Wiley Online Library,
pp. 809–836. 3

[P∗95] PROVOT X., ET AL.: Deformation constraints in a mass-spring
model to describe rigid cloth behaviour. In Graphics interface (1995),
Canadian Information Processing Society, pp. 147–147. 3

[RSAF16] RIFFNALLER-SCHIEFER A., AUGSDÖRFER U., FELLNER
D.: Isogeometric shell analysis with {NURBS} compatible subdivision
surfaces. Applied Mathematics and Computation 272, Part 1 (2016),
139 – 147. Subdivision, Geometric and Algebraic Methods, Isogeomet-
ric Analysis and Refinability. 3

[She02] SHEWCHUK J.: What is a good linear finite element? interpola-
tion, conditioning, anisotropy, and quality measures (preprint). Univer-
sity of California at Berkeley 73 (2002), 12. 3, 7

[SHW04] SCHAEFER S., HAKENBERG J., WARREN J.: Smooth sub-
division of tetrahedral meshes. In Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing (2004), ACM,
pp. 147–154. 3

[Si15] SI H.: Tetgen, a delaunay-based quality tetrahedral mesh genera-
tor. ACM Trans. Math. Softw. 41, 2 (Feb. 2015), 11:1–11:36. 2, 3

[Stu17] STUDIOS P. A.: Pixar in a box, jan 2017. URL: http://www.
pixar.com/about/Pixar-In-A-Box. 2

[Sys17] SYSTEMS D.: Solidworks, jan 2017. URL: http://www.
solidworks.de/. 2

[WBS∗13] WEBER D., BENDER J., SCHNOES M., STORK A., FELL-
NER D.: Efficient gpu data structures and methods to solve sparse linear
systems in dynamics applications. In Computer Graphics Forum (2013),
vol. 32, Wiley Online Library, pp. 16–26. 2, 6

[WHP11] WAWRZINEK A., HILDEBRANDT K., POLTHIER K.: Koiter’s
thin shells on catmull-clark limit surfaces. In VMV (2011), pp. 113–120.
3

[WKS∗11] WEBER D., KALBE T., STORK A., FELLNER D., GOESELE
M.: Interactive deformable models with quadratic bases in bernstein–
bézier-form. The Visual Computer 27, 6 (2011), 473. 3

[WMRA∗15] WEBER D., MUELLER-ROEMER J., ALTENHOFEN C.,
STORK A., FELLNER D.: Deformation simulation using cubic finite
elements and efficient p-multigrid methods. Computers & Graphics 53
(2015), 185–195. 3, 7

[ZSS96] ZORIN D., SCHRÖDER P., SWELDENS W.: Interpolating sub-
division for meshes with arbitrary topology. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques
(1996), ACM, pp. 189–192. 3

[ZTT77] ZIENKIEWICZ O. C., TAYLOR R. L., TAYLOR R. L.: The finite
element method, vol. 3. McGraw-hill London, 1977. 3

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

19

https://www.blender.org/
https://www.blender.org/
https://cubit.sandia.gov/public/15.2/help_manual/WebHelp/cubithelp.htm#mesh_generation/meshing_schemes/conversion/htet.htm
https://cubit.sandia.gov/public/15.2/help_manual/WebHelp/cubithelp.htm#mesh_generation/meshing_schemes/conversion/htet.htm
https://cubit.sandia.gov/public/15.2/help_manual/WebHelp/cubithelp.htm#mesh_generation/meshing_schemes/conversion/htet.htm
https://www.rhino3d.com/
https://www.rhino3d.com/
http://www.pixar.com/about/Pixar-In-A-Box
http://www.pixar.com/about/Pixar-In-A-Box
http://www.solidworks.de/
http://www.solidworks.de/

