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(a) Multiple waves displayed from the side (b) from above

(c) Waves interacting with static blocks

Figure 1: Breaking waves obtained with our model. An ocean scene with multiple waves is displayed (a) from the side and
(b) from above; (c) and breaking waves and backflow waves colliding with blocks. The waves combine naturally, while each of
them is modeled with its specific parameters (height, width, speed, orientation, crest slope, breaking time).

Abstract
This paper presents a new method for controlling swells and breaking waves using fluid solvers. With conven-
tional approaches that generate waves by pushing particles with oscillating planes, the resulting waves cannot
be controlled easily, and breaking waves are even more difficult to obtain in practice. Instead, we propose to use
a new wave model that physically describes the behavior of wave forces. We show that mapping those forces to
particles produces various types of waves that can be controlled by the user with only a few parameters. Our
method is based on a 2D representation that describes wave speed, width, and height. It handles many swell and
wave configurations, with various breaking situations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.3.8 [Computer Graphics]: Application—J.2 [Computer Applications]: Phys-
ical Sciences and Engineering—Earth and atmospheric sciences
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1. Introduction

Over the past decade, fluid simulation has spawned major
interest in the computer graphics community. Motions of
many fluid types (e.g., water, fire, smoke) have been sim-
ulated successfully with physically based methods, mostly
derived from the Navier-Stokes equations. Whether based on
Eulerian or Lagrangian solutions, these methods can deliver
accuracy and realism, but they often suffer from long com-
putation times, large memory requirements, and very little
control during computations.

Waves over a large body of water capture an essential part
of our vision of any coastline, but initiating conditions in
existing solvers in order to generate the expected waves is a
daunting task. However, creating realistic water simulations
without these solvers is without doubt as difficult. We seek
to provide controls to more easily create different waves in
a physically based solver, thus benefiting from its power, yet
providing more artistic freedom.

Waves are examples of turbulent fluid phenomena that
have often been used as illustrative demonstrations. In real
fluid demonstrations, waves are usually produced with a me-
chanical oscillating panel. In physically based methods, they
are therefore generated mostly with the help of a similarly
oscillating plane [BT07, SR09, MM13], and thus the fine
control of waves remains difficult to achieve in practice.

In fact, few papers address how to simulate physically
complex natural phenomena, while still offering artificial or
artistic control with intuitive user interactions or parameter-
izations. One rare exception for waves comes from Mihalef
et al. [MMS04], who control waves using a library of 2D
breaking waves. In their system, the user selects a set of 2D
slices to produce a 3D animation of a wave in an Eulerian
solver. Since modelling and controlling the fluid depend on a
library of 2D slices and their physical properties, the manip-
ulation cannot be accomplished during the simulation, which
can strongly interfere with the artist’s expression. Moreover,
as the slices store velocity vector fields, the artist also loses
much design freedom. In another work worth mentioning,
Radovitzky and Ortiz [RO98] develop a 2D finite Laitone
solution that represents a breaking wave using hyperbolic
periodic functions, following the shape of plunging waves.
Unfortunately, their model requires several parameters, and
controlling the generated waves during simulation is impos-
sible.

From the game industry angle, we should point out that
some solutions offer high-level controls for the shape of a
single wave, in the form of Bezier curve attractors. They
can produce the general shape of a wave, but do not han-
dle breaking waves, nor do they integrate well in a physical
fluid simulator for the important secondary fluid effects.

Our proposed representation accounts for high-level user
control, enabling the propagation of different configurations
of waves, as shown in Figure 1. While we have applied our

model to a smoothed particle hydrodynamics (SPH) solver,
it should also extend naturally to an Eulerian solver. More
specifically, our main contributions are:

• a simple and physically based wave model that can repre-
sent choppy, linear, or breaking waves with ease of imple-
mentation, i.e., as a straightforward additional body force;

• the ability to easily control the shape and behavior of gen-
erated waves for artistic expression, thanks to its few pa-
rameters;

• an interactive user control of waves offered through a sim-
ple yet intuitive graphical user interface (GUI).

The paper is organized as follows. Section 2 reviews ex-
isting methods for wave simulation in computer graphics.
Section 3 introduces our wave model, together with its pa-
rameters to control swells and breaking waves. Section 4 de-
scribes our implementation and presents various results. Fi-
nally, Section 5 gives our conclusions and future work.

2. Related Work

Over the past two decades, computer generated ocean waves
have drawn the attention of several authors [FR86, Tes99,
MMS04, DCGG11, NSB13]. They can be classified in two
main families: on the one hand, procedural or spectral meth-
ods that characterize water height according to time; on the
other hand, simulation methods that aim at solving Navier-
Stokes (NS) equations in 2D or 3D.

2.1. Procedural and Spectral Wave Simulation

Procedural or spectral methods are often used to model
waves for oceans of infinite depth, where the water surface is
mostly represented as a heightfield. These methods are com-
mon because they are very fast to compute and visually ap-
pealing, although they do not correspond to physically based
models. Some models [FR86, Pea86] use parametric equa-
tions to derive a surface to approximate swells and breaking
waves.

Tessendorf [Tes99] animates a heightfield using
fast Fourier transforms (FFTs), to which Bruneton et
al. [BNH10] add levels of detail to more realistically
render the ocean surface in real time. Because tuning
parameters for these methods is usually more difficult,
Thon and Ghazanfarpour [TG02] propose to use real-world
measurements as heightfields, and to add Perlin noise to
reduce repetitive visual artifacts. The main limitation of
these methods is that they cannot represent breaking waves,
since a heightfield has only one height value z for each
horizontal position (x,y). In addition, these methods are
difficult to tune for handling interactions with solid objects.

2.2. Navier-Stokes-based Wave Simulation

A large body of work in computer graphics has focused
on computational fluid dynamics (CFD) for liquids, based
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on Navier-Stokes partial differential equations (NSE). Nu-
merical solutions usually make use of an Eulerian de-
scription with finite differences to approximate a solu-
tion [HW65, FM96], with particles and a level-set to track
the fluid surface and reduce compressibility [Sta99, FF01,
FSJ01, EMF02]. A Lagrangian approach considers the fluid
as a set of particles and computes interaction between them
to approximate a solution [MCG03, BT07, SR09, PTB∗03,
IOS∗14].

From a library of 2D simulated wave slices, Mihalef et
al. [MMS04] generate 3D waves. Their method consists in
combining a series of 2D slices to model the new wave at
given times; velocities between slices are linearly interpo-
lated. In their framework, each slice corresponds to a snap-
shot of a Eulerian 2D simulation with its associated vector
field. Starting from an initial 3D geometry which can be
shaped as a swell or a breaking wave, the targeted wave is
eventually obtained during the simulation.

With shallow water equations, based on a simplified ver-
sion of NSE, Thurey et al. [TMFSG07] simulate breaking
waves at interactive framerates with a 2D plane. The wave
height and propagation speed can be controlled, and break-
ing waves are completed using an additional mesh. However,
interactions between water volumes and solid objects cannot
be physically handled.

Based on oceanography studies, the velocity field of
a 2D NSE simulation can be initialized by a combina-
tion of hyperbolic functions that represent a solitary break-
ing wave [RO98]. The idea is to combine horizontal and
vertical descriptions of a nonlinear wave [BGH∗04], us-
ing hyperbolic secant and hyperbolic tangent functions,
i.e., y = H sech(x−ω t) tanh(x−ω t), where H is the wave
height, and ω denotes the pulsation, encoding the propaga-
tion speed in the x direction. Unfortunately, wave control
remains subtle, and the resulting waves are only valid in
shallow water. In addition, the resulting waves only break
when the ground rises, which limits their applicability to the
relief of an ocean floor. Moreover, these waves propagate
only along the 2D plane corresponding to the propagation
direction. Finally, because their interaction requires to solve
the Korteweg-de Vrie partial differential equation [KdV95],
they remain too costly for interactive applications.

Darles et al. [DCG11] extend this model for 3D break-
ing waves by adding a procedural force to a multiscale SPH
solver. This method produces various types of plunging and
surging breaking waves of varying height, but it depends
highly on the fluid depth, and breaking is controlled by the
ground geometry only.

This paper proposes a new method that reduces many of
these limitations, allowing an artist to create several configu-
rations of breaking waves with few intuitive parameters. Our
model can be employed to produce propagating and inter-
acting waves in various directions. It can also generate and
control swells, independent of the depth. It corresponds to an

extension and a simplification of the model proposed by Dar-
les et al. [DCG11], based on highly controllable additional
forces that can be easily combined in a 3D fluid simulation
system.

2.3. Governing Equations and SPH Method

We use the Lagrangian form of the NS equations, which de-
scribes the flow of a fluid represented as particles. The La-
grangian form of the momentum NS equation stands as fol-
lows:

d~vi

dt
= − 1

ρi
∇pi +µi∇2~vi +

~Fext
i
ρi

(1)

d~xi

dt
= ~vi (2)

where for a given particle i, ~xi corresponds to the posi-
tion,~vi the velocity, ρi the particle density, pi the pressure, µi
the dynamic viscosity, and ~Fext

i external forces. Equation (1)
states, in the Lagrangian case, that the acceleration of a par-
ticle i at each time step depends on a sum of internal forces
(pressure and viscosity) and external forces (gravity, and in
our case, wave forces as will be described in Section 3).

Based on this formulation, smoothed particle hydrody-
namics (SPH) have been widely used in computational fluid
dynamics for numerically approximating the differential
terms of Equation (1). Each quantity Ai for a given parti-
cle i is interpolated using its j neighbors. The basic SPH
formulation [Mon92, Mon05] is:

Ai = ∑
j

m j

ρ j
A jW (~xi−~x j,h) (3)

where m j represents the mass of particle j, h is the maxi-
mal interaction distance between two particles, and W is a
smooth interpolation distance function. Symmetric deriva-
tive formulations can be used to approximate gradient and
Laplacian of a field A, as well as pressure gradient and
velocity Laplacian, to approximate a solution of Equa-
tion (1) [IOS∗14].

3. A New Generic Wave Model

Our wave model simplifies and generalizes the soliton rep-
resentation proposed by Darles et al. [DCG11]. It relies on
the addition of new forces to fluid particles, with parameters
that control swells and breaking waves in a plane with vary-
ing height, speed, breaking time, and breaking duration. We
also show how this model can be extended to various config-
urations, including orientation changes, crest variations, and
waves crossing each other.
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(a) (b) (c) (d)
Figure 2: Four steps of a breaking wave: (a) shoaling,
(b) propagation, (c) steepening, and (d) breaking.

3.1. Our 2D Nonlinear Wave Forces

From swells to breaking waves, four animation steps can be
distinguished [Kel48] (see Figure 2): (a) the fluid rises and
a wave comes out; (b) the wave propagates and the corre-
sponding swell may vary according to certain conditions,
such as water depth or wind; (c) steepening begins before
breaking, due for example to a higher ocean floor or stream
variations; and (d) the wave breaks since particles on the
crests have a higher speed than the others.

During the swell and propagation of waves, a periodical
motion of the surface can be observed, in which water par-
ticles follow an elliptical path. According to the Airy theory
in finite depth [WJ10], the vertical speed of a particle in-
creases as the particle gets closer to the water surface. More
precisely, when the wave moves forward, each particle is
subject to a vertical force that raises it, and to a horizontal
force that slightly pushes it in the wave direction. When the
wave passes the particle, the vertical force is released and the
water backflow pushes the particle backward while it goes
down.

Our model approaches these effects using external forces
within a fluid simulator. It relies on a horizontal component,
providing the wave motion, and a vertical component, driv-
ing the wave elevation. The wave propagation is given by
a user-defined wave speed ω; the shoaling step consists in
initializing all the horizontal and vertical forces at t = 0. We
define the wave force acting on a particle i with the following
formulation, using hyperbolic secant and tangent functions:

Fxi = −
√

gd sech(Adzi) tanh(Adzi)λx (4)

Fzi =

{
H sech2(A(xi−ω t− xshoal))λz if xi < xbreak
0 otherwise

(5)

where A =
√

3H/4d3; H is the user-defined wave height in
meters, t is the current time step, ω is the propagation ve-
locity of the wave, dzi = zi− z0

i is the relative depth of parti-
cle i, z0

i is the initial depth of the particle, and λx and λz are
two user-defined parameters that control the shape of break-
ing waves;

√
gd is an attenuation term proportional to grav-

ity [RO98], and ω t (Equation (5)) defines the wave position.

Figure 3 shows the horizontal force (Equation (4)) applied
to a given particle; the x coordinate in the plot represents the
particle depth dz. These curves reach their maximum when
the particle is close to the wave crest. Figure 4 shows the
vertical force (Equation (5)). This function reaches its max-
imum when the particle is near the shoaling point, and it is
canceled when the particle reaches the breaking point.

Figure 3: Representation of the horizontal component of the
wave force Fx acting on a particle according to its height dz
for three values of H.

Each step of the wave’s life can be distinguished in our
formulation:

1. Shoaling
The shoaling point xshoal locates the origin of a wave; the
forces are initialized at t = 0, and begin at position xshoal .
The vertical force is relatively large in order to raise the wa-
ter volume (blue part of the curve in Figure 4 (top)).

2. Swell propagation
Horizontally, when the wave reaches a particle at position x,
fluid particles are pushed, providing a horizontal elliptic mo-
tion described in the Airy theory [BGH∗04], thanks to Equa-
tion (4). The closer a particle is to the water surface, the
stronger is the force applied to the particle. The particle’s
backward motion is due to the SPH simulation backflow
after the wave moves away. Vertically, the force increases
progressively to generate the particle ascent (vertical elliptic
motion), provided in our model by the combination of hyper-
bolic tangent and secant that linearly decreases according to
the particle’s depth (Equation (5)).

3. Steepening
Steepening corresponds to an increase of the vertical compo-
nent of the wave force when the horizontal coordinate parti-
cle position x is close to xshoal . When the horizontal compo-
nent of the force becomes larger for crest particles, the wave
begins to steepen; the breaking stage can be initiated at any
moment (green part of the curve in Figure 4 (top)).

4. Breaking
Breaking is due to the force discontinuity in our model: the
crest’s horizontal speed is larger than the water particles lo-
cated below, thus resulting in their fall. This discontinuity is
modeled by canceling the vertical force (red part of the curve
in Figure 4 (top)).
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Figure 4: Top: Representation of the vertical component
of the wave force Fz acting on a particle with H = 0.5,
ω = 0.002, t = 0, and λz = 0.1. Bottom: Representation of
the vertical component of the wave force Fz for three values
of H at three times t.

Discussion
The curves in Figure 3 illustrate the horizontal force com-
ponent for three values of H. At low values, the horizontal
wave force reaches a maximum in a larger interval of parti-
cle depths dz, horizontally pushing deep fluid particles (i.e.,
not only those located near the surface), and thus propagat-
ing swell waves. At larger values of H, the horizontal wave
force reaches a maximum in a smaller interval of dz, push-
ing particles located near the surface and producing breaking
waves.

The curves of the plot in Figure 4 (bottom) show the evo-
lution of Fz for different values of H and t. Firstly, the verti-
cal wave force magnitude varies according to the value of H:
with low values, the magnitude is low as well as its variation
between steepening and breaking steps. In this configuration,
particles are not located high enough to simulate a breaking
wave and their motion is mainly driven by the horizontal
component of the wave’s force. The simulation of breaking
waves requires sufficiently large values of wave height H.
In addition, the lowering of the vertical wave force (which
models the shoaling and steepening steps) varies according

to time. The larger the value of t, the shorter the decreasing
part of the curve (steepening). For low values of t, this phase
allows wave particles to rise and to produce a breaking wave.

With this representation, the horizontal component of the
force is not correlated to the vertical component. It is thus
possible to produce low-amplitude waves corresponding to
swells as well as breaking waves, as will be shown in the
next sections. The expression related to the vertical force
component guarantees a linear growth of the wave, that can
be controlled over space and time, using parameters H, ω,
λx, and λz.

3.2. Control Parameters

This section describes how the parameters of our model can
be used to control local motion of waves, as well as their
global shape. They include local parameters such as individ-
ual wave height H, pulsation ω, shoaling and breaking points
xshoal and xbreak. Scaling forces using λx and λz (considered
as additional global parameters) produce different types of
waves.

Wave Height (H)
The wave height affects the amplitude of a wave, and thus

its shape, derived from Equation (4). For instance, swell is
obtained with H < 0.2, while larger values of H produce
breaking waves, as illustrated in Figures 5 and 6.

Figure 5: The shoaling and propagation of a simple swell
before it interacts with the wall on the right (H = 0.22,
ω = 0.002, d = 0.2, λx = 1.0, λz = 32.5).

Figure 6: Top: the four typical steps of breaking waves:
shoaling, swell, steepening, and breaking (H = 0.24,
ω = 0.002, d = 0.2, λx = 1.0, λz = 32.5). Bottom: break-
ing wave obtained using a linearly decreasing value of H
down to 0.0.
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Wave Pulsation (ω)
Wave pulsation controls the propagation speed of a wave

and the steepening duration (see Figure 7). The longer
this phase, the higher the particles in the breaking wave.
With this parameter, it is possible to control the shape and
the type of the simulated wave. For instance, low values
(ω < 0.002) produce plunging breaking waves, intermedi-
ate values (0.002 < ω < 0.003) produce surging breaking
waves (i.e., plunging without pipes), and larger values of ω

result in swells or choppy waves, mainly present in deep wa-
ters. Combining waves with different values of ω generate
nonuniform motions with crossing waves, that can also be
observed on beaches.

Figure 7: Duration of the steepening step of the vertical com-
ponent wave force for five values of ω evaluated on a particle
located at x = 0 with H = 0.5, xshoal = 0.2, and xbreak = 1.0.

Scaling Wave Force (λx and λz)
These parameters control globally the duration of a wave

phase, acting independently in the x and z directions. Thus
shoaling and breaking can be affected with a change of λz
over time, λz� λx emphasizing breaking. Similarly, propa-
gation speed and direction are affected with a change of λx
over time.

Shoaling and Breaking Points (xshoal and xbreak)
These two points let the user define the position for the

starting of the swell (xshoal) and the position where the wave
breaks (xbreak).

3.3. Extension to 3D Waves

The wave model described in the previous sections is defined
for a propagation along the x-axis, z corresponding to the
wave height. In this section, we provide some examples of
derivations for a more general propagation in the xy plane,
providing a wide variety of configurations.

Wave Orientation
With a given propagation direction θ in the xy plane, the cor-
responding rotation can be directly applied to the horizontal
force component Fx and to the corresponding particles, pro-
viding waves propagating in any direction.

Crest Variations
Another example of wave tuning consists in giving several

values of H so that the crest height varies. With our GUI, the
user draws a polyline that is mapped onto H values during
the simulation, as shown in Figure 8.

Figure 8: Rotating particles to propagate the wave along
the desired direction. The breaking wave has been given
a 15-degree propagation angle, with an oblique crest, and
Hmax = 0.4, ω = 0.002, d = 0.25, λx = 1.0, and λz = 32.5.

Interactions between Waves
As stated earlier in Section 2, interactions between several

waves require solving the KdV equation [KdV95], which
cannot be accomplished within an interactive context. We
propose here a simple alternative, which provides simulation
results very close to observed phenomena.

The user can generate as many waves as desired, each
wave j with its own propagation parameters (Hj, ω j, θ j,
λx j , λy j ). When two waves overlap, summing wave forces
does not correspond to actual wave crossing in the gen-
eral case. Instead, we propose to use the maximum wave
function for each particle i, i.e., Fxi = max(F1

xi , ...,F
N
xi ) and

Fzi = max(F1
zi , ...,F

N
zi ) for N simulated waves. We have pro-

duced two facing waves using moving walls, and compared
their traversing each other with our wave model (Figure 9).
We can observe similar visual behaviors.

Figure 9: Top: Two facing waves produced using a moving
wall. Bottom: Same configuration using our model.

Generation and Control of Waves
The user creates a new instance of a wave in our simulation
system with only a few initial settings: a starting location
and time t, and a propagation direction. As the wave rises
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from time t, its parameters can be modified (even interac-
tively during the simulation) through editable polylines act-
ing as time-dependent scaling factors. For instance, a poly-
line increasing from 0 to 1 during the shoaling stage pro-
duces a smoothly rising wave. This process is illustrated in
Figure 10. Each wave has its own set of parameters and can
be replayed as many times as needed. Once the user is satis-
fied with the result, the corresponding parameters and their
polylines can be exported for later use. The simulations il-
lustrated in this paper have been produced with this system.

4. Results

This section illustrates results produced with our wave
model, including shoaling, propagation, steepening, and
breaking. With our system, several scenarii can lead to in-
teracting waves: cross sea (waves meeting at oblique angles),
waves meeting from opposite directions, and a wave overtak-
ing another one. We demonstrate its efficiency within a SPH
simulation system, with several wave configurations and we
discuss the performance of our system.

4.1. Parameter Values for Different Waves

Figure 10 illustrates our GUI, used to control each parameter
(value and editable curve). For instance, the user can control
the wave height during shoaling progress, with a smoothly
increasing curve. Each parameter can be controlled the same
way with our user interface, including swell speed or crest
inclination, for instance.

With our model, waves are controlled in various ways for
providing several shapes, speeds, or breaking shapes, from
swells to collapsing waves.

Symmetrically Crossing Waves
Our model can represent many interacting crossing waves
with visual plausibility. Figure 11 shows an example of two
symmetrical waves, which is a common phenomenon in
deep waters. As we can see from this sequence, the inter-
action of two waves that propagate in opposite directions
creates a typical shock wave; the two waves continue after-
ward to propagate with their own distinct parameters. With
our model, this phenomenon can be represented simply by
acting on the λx parameter and using a positive and a nega-
tive value to represent opposite propagation directions in our
wave interaction system.

Obliquely Crossing Waves
Figure 12 shows an example with oblique waves correspond-
ing to a cross sea, a rare phenomenon observable in deep wa-
ters. This effect can be simulated using the wave orientation
parameter θ with two different orientations. The interaction
of multiple oblique waves produces the result illustrated in
Figure 13.

Figure 10: Screenshot of our OpenGL interface with its com-
plete graphical user interface. The user can draw and edit one
curve for each model parameter to control the wave behav-
ior over time. Curves and values can even be changed during
simulation.

Figure 11: Two waves crossing each other with the same op-
posite speed ω = 0.002. The wave originating from the left
is higher (H = 0.27) than the one from the right (H = 0.23).

Overtaking Waves
The sequence illustrated in Figure 14 corresponds to a wave
that overtakes another one, i.e., with higher speed propaga-
tion ω. The interaction of these two waves produces a tem-
porary unique wave, separated later on into the two original
waves that continue to propagate according to their respec-
tive speeds, as can be observed with real waves.

Multiple Waves
We have combined various types of waves, including dif-
ferent speeds, heights, and crests, and interacting with ob-
jects (interactions are naturally handled by the SPH solver).
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Figure 12: An oriented wave obliquely crossing with two
others. The two parallel waves have been given a 45-
degree propagation direction, with H = 0.26, d = 0.25, and
ω = 0.002.

Figure 13: Top: Behavior of wave crossings in reality, image
courtesy of Michel Griffon. Bottom: Simulation using our
model with a similar behavior, with H = 0.23, ω = 0.002,
d = 0.25, λx = 1.0, and λz = 32.5.

Figure 14: A faster and smaller wave (H = 0.23, ω = 0.003)
overtakes a slower and higher one (ω = 0.002, H = 0.27),
with d = 0.25 for both waves.

Figure 1 illustrates some of the configurations that we have
defined; Figure 15 shows two frames of the simulation with-
out blocks; Figure 16 uses another configuration of several
waves, with additional interactions with blocks.

A video showing all of our results is available at
https://vimeo.com/133911694.

Figure 15: Two frames of multiple waves and interactions
with limited width and several directions.

Figure 16: Two frames of multiple waves and interactions
with static blocks.

4.2. Performance and Discussion

The results provided in this paper have been produced on an
Intel Xeon E2620 2.4GHz processor with 16GB of RAM.
SPH computations run on the GPU (GTX Titan) using
CUDA 6.5, including computations of wave forces. Particle
neighbors are identified using a uniform grid, as described
by Ihmsen et al. [IABT11]. The interactive simulation sys-
tem uses 10 iterations per rendered frame (∆t = 0.001 sec.),
as shown in Table 2; particle density and pressure are
handled using the formulation introduced by Ihmsen et
al. [IOS∗14].
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Step Swell Plunging Opposite Cross sea
Figure 5 Figure 6 Figure 11 Figure 12

Neighborhood search 47.89% 48.79% 48.97% 61.48%
Internal forces evaluation 41.41% 40.54% 40.58% 31.26%
Wave forces evaluation 0.94% 0.99% 1.7% 0.86%
Integration 0.82% 0.8% 0.83% 0.49%
Memory management 8.94% 8.88% 7.92% 5.91%

Table 1: Proportion of computation times per CUDA kernel
for all our examples.

Scene Particles Time per frame
Short width (Figure 6) 30k 0.013s
Long width (Figure 12) 100k 0.022s
Large depth (Figure 8) 255k 0.076s

Table 2: Average computation time per frame for our scenes.

Our wave model is implemented as an additional body
force within a fluid solver. The simulation is displayed in-
teractively with OpenGL, and the Mitsuba renderer [Wen10]
was used for offline rendering of the particles in all figures
provided in the paper. The particles are colored according
to their velocity to highlight the application of our external
force. As detailed in Tables 1 and 2, the computational cost
corresponding to the additional forces of our model is about
1% of the entire computation time, which keeps our system
interactive even with less powerful computers and GPUs. In
fact, the overall system performance essentially depends on
the computations of fluid dynamics, and on the number of
particles, rather than on our external force model.

Our model produces various types of ocean waves, given
the adequate bounds for each parameter. Note that parame-
ters are correlated; for instance, changing the wave speed ω

also influences its height.

H > 0.5 produces unrealistic results because the resulting
vertical force is too large and particles explode. Parameter ω

is responsible for the propagation speed and the type of the
wave: swell, choppy, plunging or surging breaking waves.
When ω > 0.1, forces result in unrealistic waves that travel
too fast.

5. Conclusion and Future Work

Our simple wave force model produces a wide variety of
phenomena. It makes it possible to generate swell, choppy,
or breaking waves that can interact with each other. We
have shown that with the adequate control of each param-
eter, many different scenarios can be modeled, for example,
a swell wave that suddenly turns into a breaking wave, or
different waves that interact with each others. The list of
these effects is not exhaustive and the creative possibilities
are rich. As our model is defined as an external force, it may
be used in any type of SPH solver (i.e., WCSPH [BT07],

PCI-SPH [SR09], IISPH [ICS∗14]), and also in 3D Eule-
rian [EMF02] or hybrid solvers [CIPT14].

Validating crossing wavesas well as other wave phenom-
ena remain difficult because of the lack of measured data
with real fluids. In this paper we have shown examples that
visually assess our simple model, but given more real data,
or specific observations, we would very much like to better
validate our model.

In the future, we aim at reducing some limitations con-
cerning parameter control. For instance, wave speed affects
the wave shape. It could be interesting to propose mapping
functions that would control some higher-level parameters,
such as speed, wave height, or breaking duration. We would
also like to add fine-scale details, such as foam and sprays,
and use our generic wave model to localize areas that gener-
ate these effects.
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